Wave map null form estimates via Peter–Weyl theory

IF 1.6 2区 数学 Q1 MATHEMATICS
Grigalius Taujanskas
{"title":"Wave map null form estimates via Peter–Weyl theory","authors":"Grigalius Taujanskas","doi":"10.1016/j.jfa.2025.111040","DOIUrl":null,"url":null,"abstract":"<div><div>We study spacetime estimates for the wave map null form <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> on <span><math><mi>R</mi><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. By using the Lie group structure of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> and Peter–Weyl theory, combined with the time-periodicity of the conformal wave equation on <span><math><mi>R</mi><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, we extend the classical ideas of Klainerman and Machedon to estimates on <span><math><mi>R</mi><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, allowing for a range of powers of natural (Laplacian and wave) Fourier multiplier operators. A key difference in these curved space estimates as compared to the flat case is a loss of an arbitrarily small amount of differentiability, attributable to a lack of dispersion of linear waves on <span><math><mi>R</mi><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. This arises in Fourier space from the product structure of irreducible representations of <span><math><mrow><mi>SU</mi></mrow><mo>(</mo><mn>2</mn><mo>)</mo></math></span>. We further show that our estimates imply weighted estimates for the null form on Minkowski space.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 111040"},"PeriodicalIF":1.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002228","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study spacetime estimates for the wave map null form Q0 on R×S3. By using the Lie group structure of S3 and Peter–Weyl theory, combined with the time-periodicity of the conformal wave equation on R×S3, we extend the classical ideas of Klainerman and Machedon to estimates on R×S3, allowing for a range of powers of natural (Laplacian and wave) Fourier multiplier operators. A key difference in these curved space estimates as compared to the flat case is a loss of an arbitrarily small amount of differentiability, attributable to a lack of dispersion of linear waves on R×S3. This arises in Fourier space from the product structure of irreducible representations of SU(2). We further show that our estimates imply weighted estimates for the null form on Minkowski space.
通过Peter-Weyl理论估计波图零形式
我们研究了R×S3上的波图零形式Q0的时空估计。通过使用S3的李群结构和Peter-Weyl理论,结合R×S3上共形波动方程的时间周期性,我们将Klainerman和Machedon的经典思想扩展到R×S3上的估计,允许自然(拉普拉斯和波)傅里叶乘数算子的一系列幂。与平面情况相比,这些弯曲空间估计的一个关键区别是,由于R×S3上缺乏线性波的色散,导致任意少量的可微性损失。这源于傅里叶空间中SU(2)的不可约表示的乘积结构。我们进一步证明了我们的估计隐含了Minkowski空间上零形式的加权估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信