Schatten classes and commutators of Riesz transforms in the two weight setting

IF 1.7 2区 数学 Q1 MATHEMATICS
Michael Lacey , Ji Li , Brett D. Wick , Liangchuan Wu
{"title":"Schatten classes and commutators of Riesz transforms in the two weight setting","authors":"Michael Lacey ,&nbsp;Ji Li ,&nbsp;Brett D. Wick ,&nbsp;Liangchuan Wu","doi":"10.1016/j.jfa.2025.111028","DOIUrl":null,"url":null,"abstract":"<div><div>We characterize the Schatten class <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> of the commutator of Riesz transforms <span><math><mo>[</mo><mi>b</mi><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>]</mo></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> (<span><math><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></math></span>) in the two weight setting for <span><math><mi>n</mi><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span>, by introducing the condition that the symbol <em>b</em> is in Besov spaces associated with the given two weights. At the critical index <span><math><mi>p</mi><mo>=</mo><mi>n</mi></math></span>, the commutator <span><math><mo>[</mo><mi>b</mi><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>]</mo></math></span> belongs to Schatten class <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> if and only if <em>b</em> is a constant, and to the weak Schatten class <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>,</mo><mo>∞</mo></mrow></msup></math></span> if and only if <em>b</em> is in an oscillation sequence space associated with the given two weights. As a direct application, we have the Schatten class estimate for A. Connes' quantized derivative in the two weight setting.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 111028"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002101","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We characterize the Schatten class Sp of the commutator of Riesz transforms [b,Rj] in Rn (j=1,,n) in the two weight setting for n<p<, by introducing the condition that the symbol b is in Besov spaces associated with the given two weights. At the critical index p=n, the commutator [b,Rj] belongs to Schatten class Sn if and only if b is a constant, and to the weak Schatten class Sn, if and only if b is in an oscillation sequence space associated with the given two weights. As a direct application, we have the Schatten class estimate for A. Connes' quantized derivative in the two weight setting.
Schatten类和Riesz变换的换向子在两种权值设置下
在n<;p<;∞的两个权值集合中,引入符号b在与给定两个权值相关的Besov空间中的条件,刻画了Riesz变换[b,Rj]在Rn (j=1,…,n)中的Schatten类Sp。在临界指标p=n处,换易子[b,Rj]当且仅当b为常数时属于Schatten类Sn,当且仅当b在与给定两个权值相关联的振荡序列空间中,则属于弱Schatten类Sn,∞。作为一种直接应用,我们在两个权值设置中对a . cones的量化导数进行了Schatten类估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信