{"title":"Line graphs with the largest eigenvalue multiplicity","authors":"Wenhao Zhen, Dein Wong , Songnian Xu","doi":"10.1016/j.disc.2025.114562","DOIUrl":null,"url":null,"abstract":"<div><div>For a connected graph <em>G</em>, we denote by <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo></math></span>, <span><math><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> the line graph of <em>G</em>, the eigenvalue multiplicity of <em>λ</em> in <em>G</em>, the cyclomatic number and the number of pendant vertices in <em>G</em>, respectively. In 2023, Yang et al. <span><span>[12]</span></span> proved that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>≤</mo><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span> for any tree <em>T</em> with <span><math><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>≥</mo><mn>3</mn></math></span>, and characterized all trees <em>T</em> with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. In 2024, Chang et al. <span><span>[2]</span></span> proved that, if <em>G</em> is not a cycle, then <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>, and they characterized all graphs <em>G</em> with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>2</mn><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. The authors of <span><span>[2]</span></span> particularly stated that it seems somewhat difficult to characterize the extremal graphs <em>G</em> with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span> for an arbitrary eigenvalue <em>λ</em> of <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In this paper, we give this problem a complete solution.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114562"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001700","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a connected graph G, we denote by , , and the line graph of G, the eigenvalue multiplicity of λ in G, the cyclomatic number and the number of pendant vertices in G, respectively. In 2023, Yang et al. [12] proved that for any tree T with , and characterized all trees T with . In 2024, Chang et al. [2] proved that, if G is not a cycle, then , and they characterized all graphs G with . The authors of [2] particularly stated that it seems somewhat difficult to characterize the extremal graphs G with for an arbitrary eigenvalue λ of . In this paper, we give this problem a complete solution.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.