Almost-everywhere uniqueness of Lagrangian trajectories for 3D Navier–Stokes revisited

IF 2.1 1区 数学 Q1 MATHEMATICS
Lucio Galeati
{"title":"Almost-everywhere uniqueness of Lagrangian trajectories for 3D Navier–Stokes revisited","authors":"Lucio Galeati","doi":"10.1016/j.matpur.2025.103723","DOIUrl":null,"url":null,"abstract":"<div><div>We show that, for any Leray solution <em>u</em> to the 3D Navier–Stokes equations with <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, the associated deterministic and stochastic Lagrangian trajectories are unique for <em>Lebesgue a.e.</em> initial condition. Additionally, if <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>, then pathwise uniqueness is established for the stochastic Lagrangian trajectories starting from <em>every</em> initial condition. The result sharpens and extends the original one by Robinson and Sadowski <span><span>[1]</span></span> and is based on rather different techniques. A key role is played by a newly established asymmetric Lusin–Lipschitz property of Leray solutions <em>u</em>, in the framework of (random) Regular Lagrangian flows.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"200 ","pages":"Article 103723"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000674","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that, for any Leray solution u to the 3D Navier–Stokes equations with u0L2, the associated deterministic and stochastic Lagrangian trajectories are unique for Lebesgue a.e. initial condition. Additionally, if u0H1/2, then pathwise uniqueness is established for the stochastic Lagrangian trajectories starting from every initial condition. The result sharpens and extends the original one by Robinson and Sadowski [1] and is based on rather different techniques. A key role is played by a newly established asymmetric Lusin–Lipschitz property of Leray solutions u, in the framework of (random) Regular Lagrangian flows.
重新审视了三维纳维-斯托克斯拉格朗日轨迹的几乎处处唯一性
我们证明了,对于u0∈L2的三维Navier-Stokes方程的任何Leray解u,相关的确定性和随机拉格朗日轨迹对于Lebesgue a.e.初始条件是唯一的。另外,如果u0∈H1/2,则从每个初始条件出发的随机拉格朗日轨迹建立路径唯一性。这个结果是对Robinson和Sadowski的原始结果的强化和扩展,并且是基于相当不同的技术。在(随机)正则拉格朗日流的框架中,Leray解u的一个新建立的不对称Lusin-Lipschitz性质发挥了关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信