Dipak P. Upadhyaya MS , Gokce Cakir MD , Stefano Ramat PhD , Jeffrey Albert PhD , Aasef Shaikh MD, PhD , Satya S. Sahoo PhD , Fatema Ghasia MD
{"title":"A Multihead Attention Deep Learning Algorithm to Detect Amblyopia Using Fixation Eye Movements","authors":"Dipak P. Upadhyaya MS , Gokce Cakir MD , Stefano Ramat PhD , Jeffrey Albert PhD , Aasef Shaikh MD, PhD , Satya S. Sahoo PhD , Fatema Ghasia MD","doi":"10.1016/j.xops.2025.100775","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To develop an attention-based deep learning (DL) model based on eye movements acquired during a simple visual fixation task to detect amblyopic subjects across different types and severity from controls.</div></div><div><h3>Design</h3><div>An observational study.</div></div><div><h3>Subjects</h3><div>We recruited 40 controls and 95 amblyopic subjects (anisometropic = 32; strabismic = 29; and mixed = 34) at the Cleveland Clinic from 2020 to 2024.</div></div><div><h3>Methods</h3><div>Binocular horizontal and vertical eye positions were recorded using infrared video-oculography during binocular and monocular viewing. Amblyopic subjects were classified as those without nystagmus (n = 42) and those with nystagmus with fusion maldevelopment nystagmus (FMN) or nystagmus that did not meet the criteria of FMN or infantile nystagmus syndrome (n = 53). A multihead attention-based transformer encoder model was trained and cross-validated on deblinked and denoised eye position data acquired during fixation.</div></div><div><h3>Main Outcome Measures</h3><div>Detection of amblyopia across types (anisometropia, strabismus, or mixed) and severity (treated, mild, moderate, or severe) and subjects with and without nystagmus was evaluated with area under the receiver-operator characteristic curves, area under the precision–recall curve (AUPRC), and accuracy.</div></div><div><h3>Results</h3><div>Area under the receiver-operator characteristic curves for classification of subjects per type were 0.70 ± 0.16 for anisometropia (AUPRC: 0.72 ± 0.08), 0.78 ± 0.15 for strabismus (AUPRC: 0.81 ± 0.16), and 0.80 ± 0.13 for mixed (AUPRC: 0.82 ± 0.15). Area under the receiver-operator characteristic curves for classification of amblyopia subjects per severity were 0.77 ± 0.12 for treated/mild (AUPRC: 0.76 ± 0.18), and 0.78 ± 0.09 for moderate/severe (AUPRC: 0.79 ± 0.16). Th area under the receiver-operator characteristic curve for classification of subjects with nystagmus was 0.83 ± 0.11 (AUPRC: 0.81 ± 0.18), and the area under the receiver-operator characteristic curve for those without nystagmus was 0.75 ± 0.15 (AUPRC: 0.76 ± 0.09).</div></div><div><h3>Conclusions</h3><div>The multihead transformer DL model classified amblyopia subjects regardless of the type, severity, and presence of nystagmus. The model's ability to identify amblyopia using eye movements alone demonstrates the feasibility of using eye-tracking data in clinical settings to perform objective classifications and complement traditional amblyopia evaluations.</div></div><div><h3>Financial Disclosure(s)</h3><div>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</div></div>","PeriodicalId":74363,"journal":{"name":"Ophthalmology science","volume":"5 5","pages":"Article 100775"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmology science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666914525000739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
To develop an attention-based deep learning (DL) model based on eye movements acquired during a simple visual fixation task to detect amblyopic subjects across different types and severity from controls.
Design
An observational study.
Subjects
We recruited 40 controls and 95 amblyopic subjects (anisometropic = 32; strabismic = 29; and mixed = 34) at the Cleveland Clinic from 2020 to 2024.
Methods
Binocular horizontal and vertical eye positions were recorded using infrared video-oculography during binocular and monocular viewing. Amblyopic subjects were classified as those without nystagmus (n = 42) and those with nystagmus with fusion maldevelopment nystagmus (FMN) or nystagmus that did not meet the criteria of FMN or infantile nystagmus syndrome (n = 53). A multihead attention-based transformer encoder model was trained and cross-validated on deblinked and denoised eye position data acquired during fixation.
Main Outcome Measures
Detection of amblyopia across types (anisometropia, strabismus, or mixed) and severity (treated, mild, moderate, or severe) and subjects with and without nystagmus was evaluated with area under the receiver-operator characteristic curves, area under the precision–recall curve (AUPRC), and accuracy.
Results
Area under the receiver-operator characteristic curves for classification of subjects per type were 0.70 ± 0.16 for anisometropia (AUPRC: 0.72 ± 0.08), 0.78 ± 0.15 for strabismus (AUPRC: 0.81 ± 0.16), and 0.80 ± 0.13 for mixed (AUPRC: 0.82 ± 0.15). Area under the receiver-operator characteristic curves for classification of amblyopia subjects per severity were 0.77 ± 0.12 for treated/mild (AUPRC: 0.76 ± 0.18), and 0.78 ± 0.09 for moderate/severe (AUPRC: 0.79 ± 0.16). Th area under the receiver-operator characteristic curve for classification of subjects with nystagmus was 0.83 ± 0.11 (AUPRC: 0.81 ± 0.18), and the area under the receiver-operator characteristic curve for those without nystagmus was 0.75 ± 0.15 (AUPRC: 0.76 ± 0.09).
Conclusions
The multihead transformer DL model classified amblyopia subjects regardless of the type, severity, and presence of nystagmus. The model's ability to identify amblyopia using eye movements alone demonstrates the feasibility of using eye-tracking data in clinical settings to perform objective classifications and complement traditional amblyopia evaluations.
Financial Disclosure(s)
Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.