A Multihead Attention Deep Learning Algorithm to Detect Amblyopia Using Fixation Eye Movements

IF 3.2 Q1 OPHTHALMOLOGY
Dipak P. Upadhyaya MS , Gokce Cakir MD , Stefano Ramat PhD , Jeffrey Albert PhD , Aasef Shaikh MD, PhD , Satya S. Sahoo PhD , Fatema Ghasia MD
{"title":"A Multihead Attention Deep Learning Algorithm to Detect Amblyopia Using Fixation Eye Movements","authors":"Dipak P. Upadhyaya MS ,&nbsp;Gokce Cakir MD ,&nbsp;Stefano Ramat PhD ,&nbsp;Jeffrey Albert PhD ,&nbsp;Aasef Shaikh MD, PhD ,&nbsp;Satya S. Sahoo PhD ,&nbsp;Fatema Ghasia MD","doi":"10.1016/j.xops.2025.100775","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To develop an attention-based deep learning (DL) model based on eye movements acquired during a simple visual fixation task to detect amblyopic subjects across different types and severity from controls.</div></div><div><h3>Design</h3><div>An observational study.</div></div><div><h3>Subjects</h3><div>We recruited 40 controls and 95 amblyopic subjects (anisometropic = 32; strabismic = 29; and mixed = 34) at the Cleveland Clinic from 2020 to 2024.</div></div><div><h3>Methods</h3><div>Binocular horizontal and vertical eye positions were recorded using infrared video-oculography during binocular and monocular viewing. Amblyopic subjects were classified as those without nystagmus (n = 42) and those with nystagmus with fusion maldevelopment nystagmus (FMN) or nystagmus that did not meet the criteria of FMN or infantile nystagmus syndrome (n = 53). A multihead attention-based transformer encoder model was trained and cross-validated on deblinked and denoised eye position data acquired during fixation.</div></div><div><h3>Main Outcome Measures</h3><div>Detection of amblyopia across types (anisometropia, strabismus, or mixed) and severity (treated, mild, moderate, or severe) and subjects with and without nystagmus was evaluated with area under the receiver-operator characteristic curves, area under the precision–recall curve (AUPRC), and accuracy.</div></div><div><h3>Results</h3><div>Area under the receiver-operator characteristic curves for classification of subjects per type were 0.70 ± 0.16 for anisometropia (AUPRC: 0.72 ± 0.08), 0.78 ± 0.15 for strabismus (AUPRC: 0.81 ± 0.16), and 0.80 ± 0.13 for mixed (AUPRC: 0.82 ± 0.15). Area under the receiver-operator characteristic curves for classification of amblyopia subjects per severity were 0.77 ± 0.12 for treated/mild (AUPRC: 0.76 ± 0.18), and 0.78 ± 0.09 for moderate/severe (AUPRC: 0.79 ± 0.16). Th area under the receiver-operator characteristic curve for classification of subjects with nystagmus was 0.83 ± 0.11 (AUPRC: 0.81 ± 0.18), and the area under the receiver-operator characteristic curve for those without nystagmus was 0.75 ± 0.15 (AUPRC: 0.76 ± 0.09).</div></div><div><h3>Conclusions</h3><div>The multihead transformer DL model classified amblyopia subjects regardless of the type, severity, and presence of nystagmus. The model's ability to identify amblyopia using eye movements alone demonstrates the feasibility of using eye-tracking data in clinical settings to perform objective classifications and complement traditional amblyopia evaluations.</div></div><div><h3>Financial Disclosure(s)</h3><div>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</div></div>","PeriodicalId":74363,"journal":{"name":"Ophthalmology science","volume":"5 5","pages":"Article 100775"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmology science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666914525000739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

To develop an attention-based deep learning (DL) model based on eye movements acquired during a simple visual fixation task to detect amblyopic subjects across different types and severity from controls.

Design

An observational study.

Subjects

We recruited 40 controls and 95 amblyopic subjects (anisometropic = 32; strabismic = 29; and mixed = 34) at the Cleveland Clinic from 2020 to 2024.

Methods

Binocular horizontal and vertical eye positions were recorded using infrared video-oculography during binocular and monocular viewing. Amblyopic subjects were classified as those without nystagmus (n = 42) and those with nystagmus with fusion maldevelopment nystagmus (FMN) or nystagmus that did not meet the criteria of FMN or infantile nystagmus syndrome (n = 53). A multihead attention-based transformer encoder model was trained and cross-validated on deblinked and denoised eye position data acquired during fixation.

Main Outcome Measures

Detection of amblyopia across types (anisometropia, strabismus, or mixed) and severity (treated, mild, moderate, or severe) and subjects with and without nystagmus was evaluated with area under the receiver-operator characteristic curves, area under the precision–recall curve (AUPRC), and accuracy.

Results

Area under the receiver-operator characteristic curves for classification of subjects per type were 0.70 ± 0.16 for anisometropia (AUPRC: 0.72 ± 0.08), 0.78 ± 0.15 for strabismus (AUPRC: 0.81 ± 0.16), and 0.80 ± 0.13 for mixed (AUPRC: 0.82 ± 0.15). Area under the receiver-operator characteristic curves for classification of amblyopia subjects per severity were 0.77 ± 0.12 for treated/mild (AUPRC: 0.76 ± 0.18), and 0.78 ± 0.09 for moderate/severe (AUPRC: 0.79 ± 0.16). Th area under the receiver-operator characteristic curve for classification of subjects with nystagmus was 0.83 ± 0.11 (AUPRC: 0.81 ± 0.18), and the area under the receiver-operator characteristic curve for those without nystagmus was 0.75 ± 0.15 (AUPRC: 0.76 ± 0.09).

Conclusions

The multihead transformer DL model classified amblyopia subjects regardless of the type, severity, and presence of nystagmus. The model's ability to identify amblyopia using eye movements alone demonstrates the feasibility of using eye-tracking data in clinical settings to perform objective classifications and complement traditional amblyopia evaluations.

Financial Disclosure(s)

Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
利用注视眼运动检测弱视的多头注意深度学习算法
目的建立一种基于眼球运动的基于注意的深度学习(DL)模型,以检测不同类型和严重程度的弱视受试者。设计观察性研究。我们招募了40名对照组和95名弱视受试者(参差= 32;斜视= 29;和混合= 34)在克利夫兰诊所从2020年到2024年。方法采用红外视像仪记录双眼和单眼观察时双眼水平和垂直眼位。弱视受试者分为无眼震组(n = 42)和伴有融合性发育不良眼震(FMN)或不符合FMN或婴儿眼震综合征标准的眼震组(n = 53)。我们训练了一个基于多头注意力的变压器编码器模型,并对固定时获得的去眨眼和去噪眼位数据进行了交叉验证。检测不同类型(屈光参差、斜视或混合性)和严重程度(治疗、轻度、中度或重度)的弱视,以及有无眼球震颤的受试者,通过接受者-操作者特征曲线下面积、精确-召回曲线下面积(AUPRC)和准确性来评估。结果不同类型受试者的受测者-操作者特征曲线下面积分别为:参差型0.70±0.16 (AUPRC: 0.72±0.08),斜视型0.78±0.15 (AUPRC: 0.81±0.16),混合型0.80±0.13 (AUPRC: 0.82±0.15)。治疗/轻度弱视受试者按严重程度分类的受试-操作者特征曲线下面积为0.77±0.12 (AUPRC: 0.76±0.18),中度/重度弱视受试者按严重程度分类的受试-操作者特征曲线下面积为0.78±0.09 (AUPRC: 0.79±0.16)。有眼震的受者-操作者特征曲线下面积为0.83±0.11 (AUPRC: 0.81±0.18),无眼震的受者-操作者特征曲线下面积为0.75±0.15 (AUPRC: 0.76±0.09)。结论多头变形DL模型对弱视受试者进行分类,而不考虑其类型、严重程度和是否存在眼球震颤。该模型仅通过眼球运动识别弱视的能力证明了在临床环境中使用眼动追踪数据进行客观分类和补充传统弱视评估的可行性。财务披露专有或商业披露可在本文末尾的脚注和披露中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ophthalmology science
Ophthalmology science Ophthalmology
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
89 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信