{"title":"On the regularity of axially-symmetric solutions to the incompressible Navier-Stokes equations in a cylinder","authors":"Wojciech S. Ożański , Wojciech M. Zaja̧czkowski","doi":"10.1016/j.jde.2025.113373","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the axisymmetric Navier-Stokes equations in a finite cylinder <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. We assume that <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span> vanish on the lateral boundary ∂Ω of the cylinder, and that <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span>, <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>z</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span> vanish on the top and bottom parts of the boundary ∂Ω, where we used standard cylindrical coordinates, and we denoted by <span><math><mi>ω</mi><mo>=</mo><mrow><mi>curl</mi></mrow><mspace></mspace><mi>v</mi></math></span> the vorticity field. We use weighted estimates and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> Sobolev estimate on the modified stream function to derive three order-reduction estimates. These enable one to reduce the order of the nonlinear estimates of the equations, and help observe that the solutions to the equations are “almost regular”. We use the order-reduction estimates to show that the solution to the equations remains regular as long as, for any <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>6</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>φ</mi></mrow></msub><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msubsup></mrow></msub><mo>/</mo><msub><mrow><mo>‖</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>φ</mi></mrow></msub><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mo>∞</mo></mrow></msubsup></mrow></msub></math></span> remains bounded below by a positive number.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"438 ","pages":"Article 113373"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004000","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the axisymmetric Navier-Stokes equations in a finite cylinder . We assume that , , vanish on the lateral boundary ∂Ω of the cylinder, and that , , vanish on the top and bottom parts of the boundary ∂Ω, where we used standard cylindrical coordinates, and we denoted by the vorticity field. We use weighted estimates and Sobolev estimate on the modified stream function to derive three order-reduction estimates. These enable one to reduce the order of the nonlinear estimates of the equations, and help observe that the solutions to the equations are “almost regular”. We use the order-reduction estimates to show that the solution to the equations remains regular as long as, for any , remains bounded below by a positive number.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics