On the regularity of axially-symmetric solutions to the incompressible Navier-Stokes equations in a cylinder

IF 2.4 2区 数学 Q1 MATHEMATICS
Wojciech S. Ożański , Wojciech M. Zaja̧czkowski
{"title":"On the regularity of axially-symmetric solutions to the incompressible Navier-Stokes equations in a cylinder","authors":"Wojciech S. Ożański ,&nbsp;Wojciech M. Zaja̧czkowski","doi":"10.1016/j.jde.2025.113373","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the axisymmetric Navier-Stokes equations in a finite cylinder <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. We assume that <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span> vanish on the lateral boundary ∂Ω of the cylinder, and that <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span>, <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>z</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span> vanish on the top and bottom parts of the boundary ∂Ω, where we used standard cylindrical coordinates, and we denoted by <span><math><mi>ω</mi><mo>=</mo><mrow><mi>curl</mi></mrow><mspace></mspace><mi>v</mi></math></span> the vorticity field. We use weighted estimates and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> Sobolev estimate on the modified stream function to derive three order-reduction estimates. These enable one to reduce the order of the nonlinear estimates of the equations, and help observe that the solutions to the equations are “almost regular”. We use the order-reduction estimates to show that the solution to the equations remains regular as long as, for any <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>6</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>φ</mi></mrow></msub><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msubsup></mrow></msub><mo>/</mo><msub><mrow><mo>‖</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>φ</mi></mrow></msub><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mo>∞</mo></mrow></msubsup></mrow></msub></math></span> remains bounded below by a positive number.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"438 ","pages":"Article 113373"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004000","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the axisymmetric Navier-Stokes equations in a finite cylinder ΩR3. We assume that vr, vφ, ωφ vanish on the lateral boundary ∂Ω of the cylinder, and that vz, ωφ, zvφ vanish on the top and bottom parts of the boundary ∂Ω, where we used standard cylindrical coordinates, and we denoted by ω=curlv the vorticity field. We use weighted estimates and H3 Sobolev estimate on the modified stream function to derive three order-reduction estimates. These enable one to reduce the order of the nonlinear estimates of the equations, and help observe that the solutions to the equations are “almost regular”. We use the order-reduction estimates to show that the solution to the equations remains regular as long as, for any p(6,), vφLtLxp/vφLtLx remains bounded below by a positive number.
柱体不可压缩Navier-Stokes方程轴对称解的正则性
我们考虑有限圆柱上的轴对称Navier-Stokes方程Ω∧R3。我们假设vr, vφ, Ω φ在柱体的侧向边界∂Ω上消失,vz, Ω φ,∂zvφ在边界∂Ω的上下部分消失,我们使用标准柱坐标,我们用Ω =curlv表示涡度场。我们利用加权估计和修正流函数的H3 Sobolev估计得到了三个降阶估计。这使人们能够降低方程的非线性估计的阶数,并有助于观察到方程的解是“几乎规则的”。我们使用序约简估计来证明方程的解保持正则,只要对于任意p∈(6,∞),‖vφ‖Lt∞Lxp/‖vφ‖Lt∞Lx∞仍然被正数有界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信