{"title":"Effect of Mine Water Environment on Durability of Solid Backfilling Based on Carbonated Coal-Based Waste","authors":"Zhishang Zhang, Liqiang Ma*, Ichhuy Ngo*, Chengkun Peng, Jiangtao Zhai and Zezhou Guo, ","doi":"10.1021/acsomega.4c1149510.1021/acsomega.4c11495","DOIUrl":null,"url":null,"abstract":"<p >The durability of solid backfilling based on carbonated coal-based waste (CCBW) under mine water environments is critical for its engineering feasibility. This study investigates the deterioration mechanisms of CCBW exposed to acid solution (Acid W), alkaline solution (Alkaline W), and mine water (Mine W) through hydrochemical analysis, XRD, and SEM. Results reveal that the uniaxial compressive strength of CCBW decreased by 10.05, 3.93, and 1.62% after 28 days of immersion in the groups, respectively. Acid conditions induced CaCO<sub>3</sub> dissolution and gypsum formation, while alkaline environments triggered alkali–silica reaction expansion. Mine water exhibited minimal impact due to suspended particles mitigating ion exchange. Carbonation also enhanced the durability of CCBW by forming dense CaCO<sub>3</sub> clusters and C-A-S-H gels, thus reducing ion leaching. Notably, the average erosion resistance of carbonated samples (CCBW-5, 10, 30) was 2.32% higher than that of noncarbonated counterparts. These findings confirm the feasibility of CCBW applications in weakly alkaline mine water and highlight its potential for sustainable coal mining practices, aligning with carbon capture and circular economy principles.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 17","pages":"17626–17641 17626–17641"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c11495","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c11495","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The durability of solid backfilling based on carbonated coal-based waste (CCBW) under mine water environments is critical for its engineering feasibility. This study investigates the deterioration mechanisms of CCBW exposed to acid solution (Acid W), alkaline solution (Alkaline W), and mine water (Mine W) through hydrochemical analysis, XRD, and SEM. Results reveal that the uniaxial compressive strength of CCBW decreased by 10.05, 3.93, and 1.62% after 28 days of immersion in the groups, respectively. Acid conditions induced CaCO3 dissolution and gypsum formation, while alkaline environments triggered alkali–silica reaction expansion. Mine water exhibited minimal impact due to suspended particles mitigating ion exchange. Carbonation also enhanced the durability of CCBW by forming dense CaCO3 clusters and C-A-S-H gels, thus reducing ion leaching. Notably, the average erosion resistance of carbonated samples (CCBW-5, 10, 30) was 2.32% higher than that of noncarbonated counterparts. These findings confirm the feasibility of CCBW applications in weakly alkaline mine water and highlight its potential for sustainable coal mining practices, aligning with carbon capture and circular economy principles.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.