Biphase Ionic Hydrogels with Ultrasoftness and High Conductivity for Bio-Ionotronics

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bingsen Wang, Fagui Dong, Xisheng Sun, Yanan Bu, Haonan Wang, Dawei Tang and Lin Li*, 
{"title":"Biphase Ionic Hydrogels with Ultrasoftness and High Conductivity for Bio-Ionotronics","authors":"Bingsen Wang,&nbsp;Fagui Dong,&nbsp;Xisheng Sun,&nbsp;Yanan Bu,&nbsp;Haonan Wang,&nbsp;Dawei Tang and Lin Li*,&nbsp;","doi":"10.1021/acsnano.4c1834210.1021/acsnano.4c18342","DOIUrl":null,"url":null,"abstract":"<p >Achieving stable bioelectronic interfaces is hindered by inherent mechanical–electrochemical mismatches, limiting long-term device functionality in dynamic tissues. Current hydrogel-based bio-ionotronic devices face a fundamental trade-off: soft hydrogels lack sufficient ionic carriers, while ionic hydrogels compromise softness due to high cross-linking density. Here, we developed a biphasic ionic hydrogel (BIH) by integrating microgel-rich ionic reservoirs (microgel phase) into a continuous hydrogel matrix (CH phase) via hydrogen bonds. The microgel phase and CH phase of BIH work synergistically, reducing cross-linking density while maintaining the ion monomer content of the hydrogel. This synergistic structure decouples ionic storage from mechanical compliance, enabling ultrasoftness (2 kPa) and high ionic conductivity (8.55 S m<sup>–1</sup>), surpassing conventional ionic hydrogels. By tuning the microgel content, we increased the polymer network’s characteristic length, facilitating ion diffusion while maintaining structural integrity and reducing interfacial impedance. Demonstrations in real-time electromyography and mechanical motion sensing validated its potential for soft bioelectronics.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 17","pages":"16488–16499 16488–16499"},"PeriodicalIF":16.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c18342","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving stable bioelectronic interfaces is hindered by inherent mechanical–electrochemical mismatches, limiting long-term device functionality in dynamic tissues. Current hydrogel-based bio-ionotronic devices face a fundamental trade-off: soft hydrogels lack sufficient ionic carriers, while ionic hydrogels compromise softness due to high cross-linking density. Here, we developed a biphasic ionic hydrogel (BIH) by integrating microgel-rich ionic reservoirs (microgel phase) into a continuous hydrogel matrix (CH phase) via hydrogen bonds. The microgel phase and CH phase of BIH work synergistically, reducing cross-linking density while maintaining the ion monomer content of the hydrogel. This synergistic structure decouples ionic storage from mechanical compliance, enabling ultrasoftness (2 kPa) and high ionic conductivity (8.55 S m–1), surpassing conventional ionic hydrogels. By tuning the microgel content, we increased the polymer network’s characteristic length, facilitating ion diffusion while maintaining structural integrity and reducing interfacial impedance. Demonstrations in real-time electromyography and mechanical motion sensing validated its potential for soft bioelectronics.

Abstract Image

生物离子电子学用超柔软高导电性双相离子水凝胶
实现稳定的生物电子界面受到固有的机械-电化学不匹配的阻碍,限制了设备在动态组织中的长期功能。目前基于水凝胶的生物离子电子器件面临着一个基本的权衡:软水凝胶缺乏足够的离子载体,而离子水凝胶由于高交联密度而损害了柔软性。本研究通过氢键将富含微凝胶的离子储层(微凝胶相)整合到连续的水凝胶基质(CH相)中,开发了一种双相离子水凝胶(BIH)。BIH的微凝胶相和CH相协同作用,降低交联密度,同时保持水凝胶的离子单体含量。这种协同结构将离子存储与机械依从性分离,实现了超柔软性(2 kPa)和高离子电导率(8.55 S m-1),超过了传统的离子水凝胶。通过调整微凝胶含量,我们增加了聚合物网络的特征长度,促进了离子扩散,同时保持了结构完整性并降低了界面阻抗。实时肌电图和机械运动传感的演示验证了其在软生物电子学方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信