Reinforcement Learning-Based Dynamic Optimization of Driving Waveforms for Inkjet Printing of Viscoelastic Fluids

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Seongju Kim, Minsu Cho and Sungjune Jung*, 
{"title":"Reinforcement Learning-Based Dynamic Optimization of Driving Waveforms for Inkjet Printing of Viscoelastic Fluids","authors":"Seongju Kim,&nbsp;Minsu Cho and Sungjune Jung*,&nbsp;","doi":"10.1021/acs.langmuir.4c0514110.1021/acs.langmuir.4c05141","DOIUrl":null,"url":null,"abstract":"<p >In digital printing, the design and optimization of a driving waveform for piezoelectric printheads are critical for the precise patterning of functional materials. This study introduces an approach using a deep reinforcement learning (DRL) algorithm to dynamically control the waveform for functional inks, which vary in properties with environmental conditions. We developed a prediction model using a multilayer perceptron algorithm that accurately forecasts drop velocity and jetting morphology based on the ink’s rheological properties and waveform parameters. Integrating this model into a DRL framework, we achieved precise control over the waveform, attaining a target drop velocity of 3 ms<sup>–1</sup> for quantum dot ink within 20 steps. Further, we implemented the trained DRL agent into a drop-watching system, enabling real-time waveform adjustment to maintain optimal jetting despite changes in ink properties due to temperature variations. Our results demonstrate the significant potential of machine learning for improving precision and adaptability of industrial inkjet printing processes.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 17","pages":"10831–10840 10831–10840"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c05141","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In digital printing, the design and optimization of a driving waveform for piezoelectric printheads are critical for the precise patterning of functional materials. This study introduces an approach using a deep reinforcement learning (DRL) algorithm to dynamically control the waveform for functional inks, which vary in properties with environmental conditions. We developed a prediction model using a multilayer perceptron algorithm that accurately forecasts drop velocity and jetting morphology based on the ink’s rheological properties and waveform parameters. Integrating this model into a DRL framework, we achieved precise control over the waveform, attaining a target drop velocity of 3 ms–1 for quantum dot ink within 20 steps. Further, we implemented the trained DRL agent into a drop-watching system, enabling real-time waveform adjustment to maintain optimal jetting despite changes in ink properties due to temperature variations. Our results demonstrate the significant potential of machine learning for improving precision and adaptability of industrial inkjet printing processes.

Abstract Image

基于强化学习的粘弹性流体喷墨打印驱动波形动态优化
在数字印刷中,压电打印头驱动波形的设计和优化对于功能材料的精确图像化至关重要。本研究介绍了一种使用深度强化学习(DRL)算法来动态控制功能墨水波形的方法,功能墨水的特性随环境条件而变化。我们使用多层感知器算法开发了一个预测模型,该模型可以根据油墨的流变特性和波形参数准确预测液滴速度和喷射形态。将该模型集成到DRL框架中,我们实现了对波形的精确控制,在20步内实现了量子点墨水的目标下降速度为3 ms-1。此外,我们将训练好的DRL代理应用到水滴观察系统中,实现实时波形调整,从而在温度变化导致油墨性能变化的情况下保持最佳喷射效果。我们的研究结果证明了机器学习在提高工业喷墨打印过程的精度和适应性方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信