Water-based green media for the synthesis of cellulose acid half-esters: physicochemical characterization and conformation-modulating interactions

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nafea Achalhi , Youssef El Ouardi , Ridouan El Yousfi , Ayoub Abarkan , Soufian El Barkany , Abderrahman El Idrissi
{"title":"Water-based green media for the synthesis of cellulose acid half-esters: physicochemical characterization and conformation-modulating interactions","authors":"Nafea Achalhi ,&nbsp;Youssef El Ouardi ,&nbsp;Ridouan El Yousfi ,&nbsp;Ayoub Abarkan ,&nbsp;Soufian El Barkany ,&nbsp;Abderrahman El Idrissi","doi":"10.1016/j.ijbiomac.2025.143968","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a simple and ecofriendly pathway for synthesizing of cellulose acid half-esters, utilizing a toxic organic solvent-free synthesis strategy and ensuring a green approach. The esterification of hydroxyethyl cellulose (HEC), derived from <em>Stipa tenacissima</em>, with maleic, succinic, and phthalic anhydrides was investigated, revealing significant structural and physicochemical modifications. Increasing the anhydride/HEC molar ratio enhanced the degree of substitution (DS), reaching values of 1.4, 1.28, and 0.51 for HEC-AS, HEC-AM, and HEC-AP, respectively. High reaction temperatures (&gt;100 °C) promoted cross-linking, affecting the solubility of the modified polymers. Structural analysis showed that the organization of acid half-esters strongly influenced wetting properties and thermal behavior. HEC-AM and HEC-AP exhibited lower <em>T</em><sub><em>g</em></sub> values (40 °C and 91.82 °C) due to hydrogen bonding reorganization and the resulted configuration of the acid half-ester groups, while HEC-AS remained stable at 117.76 °C. These structural differences resulted in distinct contact angles of 55°, 90°, and 102°, respectively. Solubility and surface charge studies further confirmed the impact of modification on polymer charge behavior, resulting in an anionic character. These findings demonstrate the effectiveness of this green synthesis strategy in tailoring biopolymer properties for functional applications.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"311 ","pages":"Article 143968"},"PeriodicalIF":7.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025045209","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a simple and ecofriendly pathway for synthesizing of cellulose acid half-esters, utilizing a toxic organic solvent-free synthesis strategy and ensuring a green approach. The esterification of hydroxyethyl cellulose (HEC), derived from Stipa tenacissima, with maleic, succinic, and phthalic anhydrides was investigated, revealing significant structural and physicochemical modifications. Increasing the anhydride/HEC molar ratio enhanced the degree of substitution (DS), reaching values of 1.4, 1.28, and 0.51 for HEC-AS, HEC-AM, and HEC-AP, respectively. High reaction temperatures (>100 °C) promoted cross-linking, affecting the solubility of the modified polymers. Structural analysis showed that the organization of acid half-esters strongly influenced wetting properties and thermal behavior. HEC-AM and HEC-AP exhibited lower Tg values (40 °C and 91.82 °C) due to hydrogen bonding reorganization and the resulted configuration of the acid half-ester groups, while HEC-AS remained stable at 117.76 °C. These structural differences resulted in distinct contact angles of 55°, 90°, and 102°, respectively. Solubility and surface charge studies further confirmed the impact of modification on polymer charge behavior, resulting in an anionic character. These findings demonstrate the effectiveness of this green synthesis strategy in tailoring biopolymer properties for functional applications.

Abstract Image

合成纤维素酸半酯的水基绿色介质:物理化学表征和构象调节相互作用
本研究提出了一种简单而环保的合成纤维素酸半酯的途径,利用无毒有机溶剂合成策略,确保绿色途径。研究了从刺茅中提取的羟乙基纤维素(HEC)与马来酸酐、琥珀酸酸酐和邻苯二甲酸酐的酯化反应,发现了显著的结构和物理化学变化。增加酸酐/HEC的摩尔比,HEC- as、HEC- am和HEC- ap的取代度DS分别达到1.4、1.28和0.51。高反应温度(100℃)促进交联,影响改性聚合物的溶解度。结构分析表明,酸半酯的组织对润湿性能和热行为有很大影响。HEC-AM和HEC-AP的Tg值较低(40°C和91.82°C),这是由于氢键重组和由此产生的酸半酯基构型,而HEC-AS在117.76°C时保持稳定。这些结构差异导致不同的接触角分别为55°,90°和102°。溶解度和表面电荷的研究进一步证实了改性对聚合物电荷行为的影响,从而产生阴离子性质。这些发现证明了这种绿色合成策略在为功能应用量身定制生物聚合物特性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信