Changmin Chen , Yuhan Liu , Yu Sun , Wenhao Jiang , Yonggui Yuan , Zhao Qing , DIRECT Consortium
{"title":"Abnormal structural covariance network in major depressive disorder: Evidence from the REST-meta-MDD project","authors":"Changmin Chen , Yuhan Liu , Yu Sun , Wenhao Jiang , Yonggui Yuan , Zhao Qing , DIRECT Consortium","doi":"10.1016/j.nicl.2025.103794","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Major depressive disorder (MDD) is a common mental illness associated with brain morphological abnormalities. Although extensive studies have examined gray matter volume (GMV) changes in MDD, inconsistencies persist in reported findings. In the current study, we employed source-based morphometry (SBM) and structural covariance network (SCN) analyses to a large multi-center sample from the REST-meta-MDD database, aiming to characterize robust results of structural abnormalities in MDD.</div></div><div><h3>Methods</h3><div>We analyzed 798 MDD patients and 974 healthy controls (HCs) from the REST-meta-MDD consortium. Voxel-based morphometry was applied to generate GMV maps. SBM was used to adaptively parcellate brain into different components, and SCN was constructed based on SBM components. Volume scores in each component and SCNs between the components were both compared between MDD and HC groups, as well as between first-episode drug-naive (FEDN) and recurrent MDD subgroups.</div></div><div><h3>Results</h3><div>SBM identified 20 stable components. Three components encompassing the middle temporal gyrus, middle orbitofrontal gyrus and superior frontal gyrus exhibited volumetric differences between the MDD and HC groups. Volume differences were observed in the cingulate cortex and medial frontal gyrus between the FEDN and recurrent groups. SCN analysis revealed 9 aberrant pairs in MDD vs. HCs, and 7 pairs in FEDN vs. recurrent groups. All aberrant component pairs in the SCN implicated the prefrontal cortex.</div></div><div><h3>Conclusions</h3><div>These findings demonstrated brain structural deficits in MDD, and highlighted the prefrontal cortex as a central hub of SCN alterations. Our findings advance the understanding of MDD’s neural mechanisms and suggest directions for diagnostic research.</div></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":"46 ","pages":"Article 103794"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213158225000646","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Major depressive disorder (MDD) is a common mental illness associated with brain morphological abnormalities. Although extensive studies have examined gray matter volume (GMV) changes in MDD, inconsistencies persist in reported findings. In the current study, we employed source-based morphometry (SBM) and structural covariance network (SCN) analyses to a large multi-center sample from the REST-meta-MDD database, aiming to characterize robust results of structural abnormalities in MDD.
Methods
We analyzed 798 MDD patients and 974 healthy controls (HCs) from the REST-meta-MDD consortium. Voxel-based morphometry was applied to generate GMV maps. SBM was used to adaptively parcellate brain into different components, and SCN was constructed based on SBM components. Volume scores in each component and SCNs between the components were both compared between MDD and HC groups, as well as between first-episode drug-naive (FEDN) and recurrent MDD subgroups.
Results
SBM identified 20 stable components. Three components encompassing the middle temporal gyrus, middle orbitofrontal gyrus and superior frontal gyrus exhibited volumetric differences between the MDD and HC groups. Volume differences were observed in the cingulate cortex and medial frontal gyrus between the FEDN and recurrent groups. SCN analysis revealed 9 aberrant pairs in MDD vs. HCs, and 7 pairs in FEDN vs. recurrent groups. All aberrant component pairs in the SCN implicated the prefrontal cortex.
Conclusions
These findings demonstrated brain structural deficits in MDD, and highlighted the prefrontal cortex as a central hub of SCN alterations. Our findings advance the understanding of MDD’s neural mechanisms and suggest directions for diagnostic research.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.