An explicit Euler method for Sobolev vector fields with applications to the continuity equation on non Cartesian grids

IF 2.1 1区 数学 Q1 MATHEMATICS
Tommaso Cortopassi
{"title":"An explicit Euler method for Sobolev vector fields with applications to the continuity equation on non Cartesian grids","authors":"Tommaso Cortopassi","doi":"10.1016/j.matpur.2025.103722","DOIUrl":null,"url":null,"abstract":"<div><div>We prove a novel stability estimate in <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>)</mo></math></span> between the regular Lagrangian flow of a Sobolev vector field and a piecewise affine approximation of such flow. This approximation of the flow is obtained by a (sort of) explicit Euler method, and it is the crucial tool to prove approximation results for the solution of the continuity equation by using the representation of the solution as the push-forward via the regular Lagrangian flow of the initial datum. We approximate the solution in two ways, using different approximations for both the flow and the initial datum. In the first case we give an estimate, which however holds only in probability, of the Wasserstein distance between the solution of the continuity equation and a discrete approximation of such solution. The approximate solution is defined as the push-forward of weighted Dirac deltas (whose centers are chosen in a probabilistic way). In the second case we give a deterministic estimate of the Wasserstein distance using a slightly different approximation of the regular Lagrangian flow and requiring more regularity on the velocity field <em>u</em> than in the previous case. An advantage of both approximations is that they provide an algorithm which is easily parallelizable and does not rely on any particular structure of the mesh with which we discretize (only in space) the domain. We also compare our estimates to similar ones previously obtained in <span><span>[27]</span></span>, and we show how under certain hypotheses our method provides better convergence rates.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"199 ","pages":"Article 103722"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000662","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a novel stability estimate in Lt(Lxp) between the regular Lagrangian flow of a Sobolev vector field and a piecewise affine approximation of such flow. This approximation of the flow is obtained by a (sort of) explicit Euler method, and it is the crucial tool to prove approximation results for the solution of the continuity equation by using the representation of the solution as the push-forward via the regular Lagrangian flow of the initial datum. We approximate the solution in two ways, using different approximations for both the flow and the initial datum. In the first case we give an estimate, which however holds only in probability, of the Wasserstein distance between the solution of the continuity equation and a discrete approximation of such solution. The approximate solution is defined as the push-forward of weighted Dirac deltas (whose centers are chosen in a probabilistic way). In the second case we give a deterministic estimate of the Wasserstein distance using a slightly different approximation of the regular Lagrangian flow and requiring more regularity on the velocity field u than in the previous case. An advantage of both approximations is that they provide an algorithm which is easily parallelizable and does not rely on any particular structure of the mesh with which we discretize (only in space) the domain. We also compare our estimates to similar ones previously obtained in [27], and we show how under certain hypotheses our method provides better convergence rates.
Sobolev矢量场的显式欧拉方法及其在非笛卡尔网格上连续性方程的应用
我们证明了Sobolev向量场的正则拉格朗日流与该流的分段仿射近似在Lxp上的一种新的稳定性估计。这种近似的流动是用一种(近似)显式欧拉方法得到的,它是证明连续性方程解的近似结果的关键工具,通过初始基准的正则拉格朗日流动将解表示为推进。我们用两种方法近似解,对流动和初始数据使用不同的近似。在第一种情况下,我们给出了连续性方程的解与该解的离散逼近之间的瓦瑟斯坦距离的估计,但这种估计只在概率上成立。近似解被定义为加权狄拉克函数(其中心以概率方式选择)的前推。在第二种情况下,我们使用稍微不同的正则拉格朗日流近似给出瓦瑟斯坦距离的确定性估计,并且要求速度场u比前一种情况更具规律性。这两种近似的优点是它们提供了一种易于并行化的算法,并且不依赖于我们离散(仅在空间中)域的任何特定网格结构。我们还将我们的估计与[27]中先前获得的类似估计进行了比较,并展示了在某些假设下我们的方法如何提供更好的收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信