Ecotoxicity prediction of chemical compounds using machine learning and different molecular structure representations

Michał Marek, Rafał Kurczab
{"title":"Ecotoxicity prediction of chemical compounds using machine learning and different molecular structure representations","authors":"Michał Marek,&nbsp;Rafał Kurczab","doi":"10.1016/j.greeac.2025.100273","DOIUrl":null,"url":null,"abstract":"<div><div>Advancements in computational tools have facilitated interdisciplinary approaches in toxicology, enabling chemists to explore the toxicity and ecotoxicity of chemical compounds while minimizing ethically questionable or hazardous methods. This paper presents the development of models for predicting chemical ecotoxicity (HC<sub>50</sub>) based on machine learning algorithms and different molecular representations. A comprehensive set of descriptors was employed, including 100 molecular descriptors calculated using RDKit, 15 molecular connectivity (Chi) indices combined with shape (Kappa) indices, as well as MACCS and ECFP4 binary molecular fingerprints. The best model achieved an average RMSE of 0.740, an R² of 0.708, and an MAE of 0.546 through ten-fold cross-validation. The analysis of critical molecular descriptors identified logP, molar mass, heavy atom molar mass, Ipc, and the number of valence electrons as significant contributors to prediction of chemical ecotoxicity. This model not only facilitates ecotoxicity prediction but also provides valuable insights into the physicochemical properties influencing a molecule's ecotoxic profile, highlighting the potential of in silico approaches for ethical and efficient toxicology research.</div></div>","PeriodicalId":100594,"journal":{"name":"Green Analytical Chemistry","volume":"13 ","pages":"Article 100273"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Analytical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772577425000692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in computational tools have facilitated interdisciplinary approaches in toxicology, enabling chemists to explore the toxicity and ecotoxicity of chemical compounds while minimizing ethically questionable or hazardous methods. This paper presents the development of models for predicting chemical ecotoxicity (HC50) based on machine learning algorithms and different molecular representations. A comprehensive set of descriptors was employed, including 100 molecular descriptors calculated using RDKit, 15 molecular connectivity (Chi) indices combined with shape (Kappa) indices, as well as MACCS and ECFP4 binary molecular fingerprints. The best model achieved an average RMSE of 0.740, an R² of 0.708, and an MAE of 0.546 through ten-fold cross-validation. The analysis of critical molecular descriptors identified logP, molar mass, heavy atom molar mass, Ipc, and the number of valence electrons as significant contributors to prediction of chemical ecotoxicity. This model not only facilitates ecotoxicity prediction but also provides valuable insights into the physicochemical properties influencing a molecule's ecotoxic profile, highlighting the potential of in silico approaches for ethical and efficient toxicology research.
使用机器学习和不同分子结构表征的化合物生态毒性预测
计算工具的进步促进了毒理学的跨学科方法,使化学家能够探索化合物的毒性和生态毒性,同时最大限度地减少道德上有问题或危险的方法。本文介绍了基于机器学习算法和不同分子表示的化学生态毒性(HC50)预测模型的发展。利用RDKit计算的100个分子描述符,15个分子连通性(Chi)指数结合形状(Kappa)指数,以及MACCS和ECFP4二元分子指纹。经10倍交叉验证,最佳模型平均RMSE为0.740,R²为0.708,MAE为0.546。通过对关键分子描述符的分析,发现logP、摩尔质量、重原子摩尔质量、Ipc和价电子数是预测化学生态毒性的重要因素。该模型不仅促进了生态毒性预测,而且为影响分子生态毒性特征的物理化学特性提供了有价值的见解,突出了伦理和高效毒理学研究的计算机方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信