Magnetization-driven quantum anomalous Hall effect and topological transitions in monolayer T-RuO2

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Weijing Yan , Yanqing Shen , Xin Yang , Zijian Wang , Xianghui Meng , Bing Zhang , Qing Ai , Yong Shuai , Zhongxiang Zhou
{"title":"Magnetization-driven quantum anomalous Hall effect and topological transitions in monolayer T-RuO2","authors":"Weijing Yan ,&nbsp;Yanqing Shen ,&nbsp;Xin Yang ,&nbsp;Zijian Wang ,&nbsp;Xianghui Meng ,&nbsp;Bing Zhang ,&nbsp;Qing Ai ,&nbsp;Yong Shuai ,&nbsp;Zhongxiang Zhou","doi":"10.1016/j.physb.2025.417318","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional topological insulators exhibit dissipationless boundary states, enabling breakthroughs in high-speed, low-power electronics. This study investigates monolayer T-RuO<sub>2</sub> as a novel tunable magnetic topological material using first-principles calculations. T-RuO<sub>2</sub> intrinsically exhibits in-plane ferromagnetic ordering but remains topologically trivial. Notably, when the magnetization tilts out of the plane, it undergoes a topological phase transition, entering a non-trivial state with a Chern number of <em>C</em> = −2, thereby realizing the quantum anomalous Hall effect (QAHE). Furthermore, applying 0 %–2 % in-plane biaxial tensile strain enables precise control over the magnetization deflection required for this transition. The notable robustness of the topological properties of T-RuO<sub>2</sub> under various deformations suggests its potential as a stable and reliable candidate for next-generation quantum devices.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"712 ","pages":"Article 417318"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625004351","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional topological insulators exhibit dissipationless boundary states, enabling breakthroughs in high-speed, low-power electronics. This study investigates monolayer T-RuO2 as a novel tunable magnetic topological material using first-principles calculations. T-RuO2 intrinsically exhibits in-plane ferromagnetic ordering but remains topologically trivial. Notably, when the magnetization tilts out of the plane, it undergoes a topological phase transition, entering a non-trivial state with a Chern number of C = −2, thereby realizing the quantum anomalous Hall effect (QAHE). Furthermore, applying 0 %–2 % in-plane biaxial tensile strain enables precise control over the magnetization deflection required for this transition. The notable robustness of the topological properties of T-RuO2 under various deformations suggests its potential as a stable and reliable candidate for next-generation quantum devices.
单层T-RuO2中磁化驱动的量子反常霍尔效应和拓扑跃迁
二维拓扑绝缘体表现出无耗散边界态,使高速,低功耗电子技术取得突破。本研究利用第一性原理计算研究了单层T-RuO2作为一种新型可调谐磁性拓扑材料。T-RuO2本质上表现出平面内的铁磁有序,但在拓扑结构上仍然微不足道。值得注意的是,当磁化向平面倾斜时,它经历了拓扑相变,进入非平凡态,其陈数为C =−2,从而实现了量子反常霍尔效应(QAHE)。此外,施加0 % -2 %的平面内双轴拉伸应变,可以精确控制这种转变所需的磁化偏转。T-RuO2在各种变形下的拓扑特性具有显著的鲁棒性,这表明它有潜力成为下一代量子器件稳定可靠的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信