{"title":"Molecular basis of cell fate plasticity — insights from the privileged cells","authors":"Stephen Maxwell Scalf, Qiao Wu, Shangqin Guo","doi":"10.1016/j.gde.2025.102354","DOIUrl":null,"url":null,"abstract":"<div><div>In the post-Yamanaka era, the rolling balls on Waddington’s hilly landscape not only roll downward, but also go upward or sideways. This new-found mobility implies that the tantalizing somatic cell plasticity fueling regeneration, once only known to planarians and newts, might be sparking in the cells of mice and humans, if only we knew how to fully unlock it. The hope for ultimate regeneration was made even more tangible by the observations that partial reprogramming by the Yamanaka factors reverses many hallmarks of aging [76], even though the underlying mechanism remains unclear. We intend to revisit the milestones in the evolving understanding of cell fate plasticity and glean molecular insights from an unusual somatic cell state, the privileged cell state that reprograms in a manner defying the stochastic model. We synthesize our view of the molecular underpinning of cell fate plasticity, from which we speculate how to harness it for regeneration and rejuvenation. We propose that senescence, aging and malignancy represent distinct cell states with definable biochemical and biophysical parameters.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"93 ","pages":"Article 102354"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X25000462","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the post-Yamanaka era, the rolling balls on Waddington’s hilly landscape not only roll downward, but also go upward or sideways. This new-found mobility implies that the tantalizing somatic cell plasticity fueling regeneration, once only known to planarians and newts, might be sparking in the cells of mice and humans, if only we knew how to fully unlock it. The hope for ultimate regeneration was made even more tangible by the observations that partial reprogramming by the Yamanaka factors reverses many hallmarks of aging [76], even though the underlying mechanism remains unclear. We intend to revisit the milestones in the evolving understanding of cell fate plasticity and glean molecular insights from an unusual somatic cell state, the privileged cell state that reprograms in a manner defying the stochastic model. We synthesize our view of the molecular underpinning of cell fate plasticity, from which we speculate how to harness it for regeneration and rejuvenation. We propose that senescence, aging and malignancy represent distinct cell states with definable biochemical and biophysical parameters.
期刊介绍:
Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...]
The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year:
• Cancer Genomics
• Genome Architecture and Expression
• Molecular and genetic basis of disease
• Developmental mechanisms, patterning and evolution
• Cell reprogramming, regeneration and repair
• Genetics of Human Origin / Evolutionary genetics (alternate years)