The whole-brain structural and functional connectome in Alzheimer’s disease spectrum: A multimodal Bayesian meta-analysis of graph theoretical characteristics
Wenxiong Liu , Chao Zuo , Li Chen , Huan Lan , Chunyan Luo , Xiao Li , Graham J. Kemp , Su Lui , Xueling Suo , Qiyong Gong
{"title":"The whole-brain structural and functional connectome in Alzheimer’s disease spectrum: A multimodal Bayesian meta-analysis of graph theoretical characteristics","authors":"Wenxiong Liu , Chao Zuo , Li Chen , Huan Lan , Chunyan Luo , Xiao Li , Graham J. Kemp , Su Lui , Xueling Suo , Qiyong Gong","doi":"10.1016/j.neubiorev.2025.106174","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer’s disease (AD) spectrum is increasingly recognized as a progressive network-disconnection syndrome. Neuroimaging studies using graph theoretical analysis (GTA) have reported alterations in the topological properties of whole-brain structural and functional connectomes in both preclinical AD and AD patients, though findings remain inconsistent. This study aimed to identify robust changes in multimodal GTA metrics across the AD spectrum through a comprehensive literature search and Bayesian random-effects meta-analyses. The analysis included 53 studies (37 functional and 17 structural), involving 1649 AD patients, 1455 preclinical AD patients, and 1771 healthy controls (HC). Results revealed lower structural network integration (evidenced by higher characteristic path length and/or normalized characteristic path length) and segregation (evidenced by lower clustering coefficient and local efficiency) in AD and preclinical AD patients compared to HC. Functional network segregation was also lower in AD patients, while preclinical AD showed preserved functional topology despite structural changes. Moderator analyses identified potential methodological moderators, including neuroimaging technique, node and edge definitions, and network type, although further validation is needed. These findings support the progressive disconnection hypothesis in the AD spectrum and suggest that structural network alterations may precede functional network changes. Furthermore, the results help clarify inconsistencies in previous studies and highlight the utility of graph-based metrics as biomarkers for staging AD progression.</div></div>","PeriodicalId":56105,"journal":{"name":"Neuroscience and Biobehavioral Reviews","volume":"174 ","pages":"Article 106174"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience and Biobehavioral Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149763425001745","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s disease (AD) spectrum is increasingly recognized as a progressive network-disconnection syndrome. Neuroimaging studies using graph theoretical analysis (GTA) have reported alterations in the topological properties of whole-brain structural and functional connectomes in both preclinical AD and AD patients, though findings remain inconsistent. This study aimed to identify robust changes in multimodal GTA metrics across the AD spectrum through a comprehensive literature search and Bayesian random-effects meta-analyses. The analysis included 53 studies (37 functional and 17 structural), involving 1649 AD patients, 1455 preclinical AD patients, and 1771 healthy controls (HC). Results revealed lower structural network integration (evidenced by higher characteristic path length and/or normalized characteristic path length) and segregation (evidenced by lower clustering coefficient and local efficiency) in AD and preclinical AD patients compared to HC. Functional network segregation was also lower in AD patients, while preclinical AD showed preserved functional topology despite structural changes. Moderator analyses identified potential methodological moderators, including neuroimaging technique, node and edge definitions, and network type, although further validation is needed. These findings support the progressive disconnection hypothesis in the AD spectrum and suggest that structural network alterations may precede functional network changes. Furthermore, the results help clarify inconsistencies in previous studies and highlight the utility of graph-based metrics as biomarkers for staging AD progression.
期刊介绍:
The official journal of the International Behavioral Neuroscience Society publishes original and significant review articles that explore the intersection between neuroscience and the study of psychological processes and behavior. The journal also welcomes articles that primarily focus on psychological processes and behavior, as long as they have relevance to one or more areas of neuroscience.