Conversion of municipal solid waste to green energy: numerical studies

M. Nazim Uddin , Md.Abdus Salam , Salma Akhter , Abu Yousuf , Arup Kumar Biswas , Badrul Amin Khan , M. Rakib Uddin
{"title":"Conversion of municipal solid waste to green energy: numerical studies","authors":"M. Nazim Uddin ,&nbsp;Md.Abdus Salam ,&nbsp;Salma Akhter ,&nbsp;Abu Yousuf ,&nbsp;Arup Kumar Biswas ,&nbsp;Badrul Amin Khan ,&nbsp;M. Rakib Uddin","doi":"10.1016/j.wmb.2025.100211","DOIUrl":null,"url":null,"abstract":"<div><div>Greenhouse gas (GHG) emissions from the conventional management of municipal solid waste (MSW) are a serious environmental problem. Transformation of energy content present in MSW to combined heat and power (CHP) offers simultaneous advantages of reduction in GHG emission and pressure on finite fossil fuel reserve. Current research is devoted to developing a numerical model in Aspen Plus software to estimate the CHP generation potentiality of MSW and application to Bangladesh for the first time. CHP generation is accomplished through thermal treatment of gasification coupling with an internal combustion engine (ICE) system. Gasification model development is completed through calibration and validation. Model calibration is performed by comparing the experimental data on syngas generation from a blend of waste pulp (WP) and deinking sludge (DIS) in a pilot-scale fluidized bed reactor (FBR) whereas validation is by linking the outcomes on gasification of bamboo chips in an FBR at four different operating conditions. Sensitivity analysis identifies 850 °C and an equivalence ratio of 0.2 as the optimal conditions for air-gasification of MSW. The study estimates the CHP generation capacity of the analyzed MSW is 0.89 kWh/kg of dry solid (DS) MSW for electrical energy and 1.61 kWh/kg of DS for thermal energy. MSW in Bangladesh could generate approximately 3,300 GWh/yr of electricity and 6,000 GWh/yr of thermal energy in 2024. Electrical and thermal energy generation from MSW can reduce net annual GHG emissions of 2,510 Mt CO<sub>2</sub>/yr compared to similar quantities of CHP generation from fossil fuels. This ensures proper MSW management, greater GHG reduction, and some relief for Bangladesh’s energy crisis.</div></div>","PeriodicalId":101276,"journal":{"name":"Waste Management Bulletin","volume":"3 3","pages":"Article 100211"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949750725000409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Greenhouse gas (GHG) emissions from the conventional management of municipal solid waste (MSW) are a serious environmental problem. Transformation of energy content present in MSW to combined heat and power (CHP) offers simultaneous advantages of reduction in GHG emission and pressure on finite fossil fuel reserve. Current research is devoted to developing a numerical model in Aspen Plus software to estimate the CHP generation potentiality of MSW and application to Bangladesh for the first time. CHP generation is accomplished through thermal treatment of gasification coupling with an internal combustion engine (ICE) system. Gasification model development is completed through calibration and validation. Model calibration is performed by comparing the experimental data on syngas generation from a blend of waste pulp (WP) and deinking sludge (DIS) in a pilot-scale fluidized bed reactor (FBR) whereas validation is by linking the outcomes on gasification of bamboo chips in an FBR at four different operating conditions. Sensitivity analysis identifies 850 °C and an equivalence ratio of 0.2 as the optimal conditions for air-gasification of MSW. The study estimates the CHP generation capacity of the analyzed MSW is 0.89 kWh/kg of dry solid (DS) MSW for electrical energy and 1.61 kWh/kg of DS for thermal energy. MSW in Bangladesh could generate approximately 3,300 GWh/yr of electricity and 6,000 GWh/yr of thermal energy in 2024. Electrical and thermal energy generation from MSW can reduce net annual GHG emissions of 2,510 Mt CO2/yr compared to similar quantities of CHP generation from fossil fuels. This ensures proper MSW management, greater GHG reduction, and some relief for Bangladesh’s energy crisis.

Abstract Image

城市固体废物转化为绿色能源:数值研究
传统的城市固体废物处理过程中产生的温室气体排放是一个严重的环境问题。将城市生活垃圾中的能量含量转化为热电联产(CHP)具有减少温室气体排放和对有限的化石燃料储备施加压力的双重优势。目前的研究致力于在Aspen Plus软件中开发一个数值模型,以估计城市生活垃圾的热电联产潜力,并首次在孟加拉国应用。热电联产是通过与内燃机(ICE)系统耦合的气化热处理来完成的。气化模型开发通过校准和验证完成。通过比较中试规模流化床反应器(FBR)中废纸浆(WP)和脱墨污泥(DIS)混合产生合成气的实验数据来进行模型校准,而通过将四种不同操作条件下的竹片在FBR中气化的结果联系起来进行验证。灵敏度分析表明,850°C和0.2的等效比是城市生活垃圾空气气化的最佳条件。研究估计,所分析的城市生活垃圾的热电联产容量为0.89千瓦时/千克干固体固体(DS)城市生活垃圾的电能和1.61千瓦时/千克干固体固体热能。到2024年,孟加拉国的城市垃圾可产生约3300吉瓦时/年的电力和6000吉瓦时/年的热能。与利用化石燃料生产同等数量的热电联产相比,利用城市生活垃圾生产电能和热能每年可减少2510亿吨二氧化碳的温室气体净排放量。这确保了适当的城市生活垃圾管理,更大的温室气体减排,并在一定程度上缓解了孟加拉国的能源危机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信