Pillararene-based supramolecular polymeric sub-nanochannel membranes with enhanced cation selectivity for osmotic energy conversion

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yumei Wang , Qingyang Zhang , Zichen Li , Mingxin Nie , Yi Liu , Yue Sun
{"title":"Pillararene-based supramolecular polymeric sub-nanochannel membranes with enhanced cation selectivity for osmotic energy conversion","authors":"Yumei Wang ,&nbsp;Qingyang Zhang ,&nbsp;Zichen Li ,&nbsp;Mingxin Nie ,&nbsp;Yi Liu ,&nbsp;Yue Sun","doi":"10.1016/j.memsci.2025.124162","DOIUrl":null,"url":null,"abstract":"<div><div>The development of ion-selective sub-nanochannel membranes with high ionic flux and low electrical resistance remains a huge challenge. Herein, pillararene-based supramolecular polymeric membranes were assembled using the network-structured sulfo group poly(pillar[5]arene) and sulfonated poly(ether ether ketone). Highly selective cation transport and efficient salinity gradient energy conversion were achieved by reconstructing the ion transport channel and introducing free volume to make the channel size less than 1 nm. Pore size distribution was adjusted by increasing the pillararene content, improving the microstructure and macroscopic properties of nanochannel membranes, and promoting ion transport. The ion transport mechanism within the transport channel was generated via multiple synergistic effects of increasing charge density, free volume, and cation-π interactions. As osmotic energy generators, pillararene-based supramolecular polymeric membranes exhibited an impressive output power density of 19.3 W m<sup>−2</sup> and an ultra-high Na<sup>+</sup> transference number (0.98), with an energy conversion efficiency of 46.1 % at a 50-fold NaCl concentration gradient. These results present a novel strategy to construct angstrom-scale channel for the application toward emerging energy technologies.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"729 ","pages":"Article 124162"},"PeriodicalIF":8.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738825004752","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of ion-selective sub-nanochannel membranes with high ionic flux and low electrical resistance remains a huge challenge. Herein, pillararene-based supramolecular polymeric membranes were assembled using the network-structured sulfo group poly(pillar[5]arene) and sulfonated poly(ether ether ketone). Highly selective cation transport and efficient salinity gradient energy conversion were achieved by reconstructing the ion transport channel and introducing free volume to make the channel size less than 1 nm. Pore size distribution was adjusted by increasing the pillararene content, improving the microstructure and macroscopic properties of nanochannel membranes, and promoting ion transport. The ion transport mechanism within the transport channel was generated via multiple synergistic effects of increasing charge density, free volume, and cation-π interactions. As osmotic energy generators, pillararene-based supramolecular polymeric membranes exhibited an impressive output power density of 19.3 W m−2 and an ultra-high Na+ transference number (0.98), with an energy conversion efficiency of 46.1 % at a 50-fold NaCl concentration gradient. These results present a novel strategy to construct angstrom-scale channel for the application toward emerging energy technologies.

Abstract Image

具有增强阳离子选择性渗透能转换的柱芳烃基超分子聚合物亚纳米通道膜
开发具有高离子通量和低电阻的离子选择性亚纳米通道膜仍然是一个巨大的挑战。本文采用网状结构的亚砜基聚(柱状[5]芳烃)和磺化聚(醚醚酮)组装了基于柱状芳烃的超分子聚合物膜。通过重构离子传输通道并引入自由体积使通道尺寸小于1 nm,实现了高选择性阳离子传输和高效的盐度梯度能量转换。通过增加柱芳烃含量、改善纳米通道膜的微观结构和宏观性能、促进离子传输来调节孔径分布。离子在传输通道内的传输机制是通过增加电荷密度、自由体积和阳离子-π相互作用的多重协同效应产生的。作为渗透能发生器,柱芳烃基超分子聚合物膜具有19.3 W m−2的输出功率密度和极高的Na+转移数(0.98),在50倍NaCl浓度梯度下的能量转换效率为46.1%。这些结果为构建用于新兴能源技术的埃级通道提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信