A Machine Learning-Based Model Infers the Sea Surface Velocity of Surface Water and Ocean Topography (SWOT)

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Shuyi Zhou, Jihai Dong, Hong Li, Guangjun Xu, Fanghua Xu
{"title":"A Machine Learning-Based Model Infers the Sea Surface Velocity of Surface Water and Ocean Topography (SWOT)","authors":"Shuyi Zhou,&nbsp;Jihai Dong,&nbsp;Hong Li,&nbsp;Guangjun Xu,&nbsp;Fanghua Xu","doi":"10.1029/2024GL110731","DOIUrl":null,"url":null,"abstract":"<p>High-resolution sea surface velocity (SSV) is crucial for advancing our understanding of ocean sub-mesoscale processes, energy cascades, etc. The recently launched Surface Water and Ocean Topography (SWOT) satellite measures sea surface height with a sub-mesoscale resolved resolution. Based on geostrophic balance, the so-called geostrophic velocity in SWOT is estimated. Although the SWOT-derived velocity is not true geostrophic velocity as it does not consider the separation of balanced and unbalanced motions, it offers valuable insights into both geostrophic and ageostrophic velocities. Here we propose a machine learning-based model to infer the SSV using SWOT and drifter data. The result demonstrates the error between the geostrophic velocities from SWOT and the total velocities from the drifter are reduced by about 50%. Furthermore, the kinetic energy of inferred velocities aligns more closely with reanalysis data, particularly at low latitudes. This study thus presents a promising approach for inferring global SSV using SWOT data.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 9","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL110731","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GL110731","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-resolution sea surface velocity (SSV) is crucial for advancing our understanding of ocean sub-mesoscale processes, energy cascades, etc. The recently launched Surface Water and Ocean Topography (SWOT) satellite measures sea surface height with a sub-mesoscale resolved resolution. Based on geostrophic balance, the so-called geostrophic velocity in SWOT is estimated. Although the SWOT-derived velocity is not true geostrophic velocity as it does not consider the separation of balanced and unbalanced motions, it offers valuable insights into both geostrophic and ageostrophic velocities. Here we propose a machine learning-based model to infer the SSV using SWOT and drifter data. The result demonstrates the error between the geostrophic velocities from SWOT and the total velocities from the drifter are reduced by about 50%. Furthermore, the kinetic energy of inferred velocities aligns more closely with reanalysis data, particularly at low latitudes. This study thus presents a promising approach for inferring global SSV using SWOT data.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

基于机器学习的海表速度和海洋地形推断模型(SWOT)
高分辨率海面速度(SSV)对提高我们对海洋亚中尺度过程、能量级联等的认识至关重要。最近发射的地表水和海洋地形(SWOT)卫星以亚中尺度分辨率测量海面高度。以地转平衡为基础,估算SWOT中的地转速度。虽然swot导出的速度并不是真正的地转速度,因为它没有考虑平衡运动和不平衡运动的分离,但它为地转速度和地转速度提供了有价值的见解。在这里,我们提出了一个基于机器学习的模型来推断SSV使用SWOT和漂移数据。结果表明,SWOT计算的地转速度与漂移机总速度之间的误差减小了约50%。此外,推断速度的动能与再分析数据更接近,特别是在低纬度地区。因此,本研究提出了一种有前途的方法来推断使用SWOT数据的全球SSV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信