{"title":"Perfluoroalkyl and polyfluoroalkyl substances interact with platelet glycoprotein Ibα and exacerbate thrombosis","authors":"Ming Liu, Weiqing Zhao, Chaoyu Ma, Muhammad Awais, Xue Chen, Yiting Feng, Tianyu Wang, Shaoyun Zhou, Yan Bai, Shuai Jiang, Dachuan Zhang, Guangheng Zhu, Xiaohong Ruby Xu, Miao Xu, Heyu Ni, Chuanbin Shen","doi":"10.1016/j.jhazmat.2025.138506","DOIUrl":null,"url":null,"abstract":"Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are highly stable man-made chemicals. They have recently garnered significant attention due to their ubiquitous presence in the environment and deleterious effects on human health including cardiovascular diseases (CVDs). Thrombosis due to platelet activation is a major aspect in CVDs. However, the direct effect and underlying mechanism of PFAS on the platelets remains elusive. Here, we observed that PFAS engagement with the extracellular domain of platelet GPIbα, transduced GPIbα-driven inward signals, resulting in intracellular calcium mobilization, activation of AKT and αⅡbβ3 integrin, culminating in platelet aggregation and procoagulant platelet formation. PFAS pretreatment enhanced GPIb-mediated platelet spreading and thrombus formation under high shear conditions. PFAS-induced platelet activation was markedly decreased in <em>Gpibα</em>-deficient mice. PFAS-primed platelets drove neutrophil extracellular traps formation through GPIbα-dependent pathway. Further, PFAS-exposed mice showed heightened risk of thrombus growth and ischemic stroke. Our findings provide experimental evidence for the causal links between PFAS exposure and thrombotic CVDs. Blockade of GPIbα and the downstream pathways could be an instrumental strategy against PFAS-induced platelet activation and thrombosis.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"225 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138506","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are highly stable man-made chemicals. They have recently garnered significant attention due to their ubiquitous presence in the environment and deleterious effects on human health including cardiovascular diseases (CVDs). Thrombosis due to platelet activation is a major aspect in CVDs. However, the direct effect and underlying mechanism of PFAS on the platelets remains elusive. Here, we observed that PFAS engagement with the extracellular domain of platelet GPIbα, transduced GPIbα-driven inward signals, resulting in intracellular calcium mobilization, activation of AKT and αⅡbβ3 integrin, culminating in platelet aggregation and procoagulant platelet formation. PFAS pretreatment enhanced GPIb-mediated platelet spreading and thrombus formation under high shear conditions. PFAS-induced platelet activation was markedly decreased in Gpibα-deficient mice. PFAS-primed platelets drove neutrophil extracellular traps formation through GPIbα-dependent pathway. Further, PFAS-exposed mice showed heightened risk of thrombus growth and ischemic stroke. Our findings provide experimental evidence for the causal links between PFAS exposure and thrombotic CVDs. Blockade of GPIbα and the downstream pathways could be an instrumental strategy against PFAS-induced platelet activation and thrombosis.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.