{"title":"Uncovering the doping mechanism of nitric oxide in high-performance P-type WSe2 transistors","authors":"Hao-Yu Lan, Chih-Pin Lin, Lina Liu, Jun Cai, Zheng Sun, Peng Wu, Yuanqiu Tan, Shao-Heng Yang, Tuo-Hung Hou, Joerg Appenzeller, Zhihong Chen","doi":"10.1038/s41467-025-59423-9","DOIUrl":null,"url":null,"abstract":"<p>Atomically thin two-dimensional (2D) semiconductors are promising candidates for beyond-silicon electronic devices. However, an excessive contact resistance due to ineffective or non-existent doping techniques hinders their technological readiness. Here, we unveil the doping mechanism of pure nitric oxide and demonstrate its effectiveness on wafer-scale grown monolayer and bilayer tungsten diselenide (1L- and 2L-WSe<sub>2</sub>) transistors, where doping bands induced by nitric oxide can realign the Schottky barrier and approach p-type unipolar transport. This doping approach, combined with a scaled high-κ dielectric, yields WSe<sub>2</sub> transistors with high performance metrics. For monolayer WSe<sub>2</sub>, we achieved an on-state current of 300 μA/μm (at a drain-to-source voltage of –1 V and overdrive voltage of –0.8 V), contact resistance of 875 Ω·μm, peak transconductance of 400 μS/μm, and a subthreshold swing of 70 mV/dec, while preserving on/off ratios >10<sup>9</sup>, minimal variability, and good stability over 24 days under moderate thermal conditions. For bilayer WSe<sub>2</sub>, the devices exhibit an on-state current of 448 μA/μm and contact resistance of 390 Ω·μm, further showcasing the scalability and effectiveness of the NO doping method. Our findings establish NO doping as a promising technique for realizing high-performance p-type 2D transistors and advancing next-generation ultra-scaled electronic devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"36 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59423-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Atomically thin two-dimensional (2D) semiconductors are promising candidates for beyond-silicon electronic devices. However, an excessive contact resistance due to ineffective or non-existent doping techniques hinders their technological readiness. Here, we unveil the doping mechanism of pure nitric oxide and demonstrate its effectiveness on wafer-scale grown monolayer and bilayer tungsten diselenide (1L- and 2L-WSe2) transistors, where doping bands induced by nitric oxide can realign the Schottky barrier and approach p-type unipolar transport. This doping approach, combined with a scaled high-κ dielectric, yields WSe2 transistors with high performance metrics. For monolayer WSe2, we achieved an on-state current of 300 μA/μm (at a drain-to-source voltage of –1 V and overdrive voltage of –0.8 V), contact resistance of 875 Ω·μm, peak transconductance of 400 μS/μm, and a subthreshold swing of 70 mV/dec, while preserving on/off ratios >109, minimal variability, and good stability over 24 days under moderate thermal conditions. For bilayer WSe2, the devices exhibit an on-state current of 448 μA/μm and contact resistance of 390 Ω·μm, further showcasing the scalability and effectiveness of the NO doping method. Our findings establish NO doping as a promising technique for realizing high-performance p-type 2D transistors and advancing next-generation ultra-scaled electronic devices.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.