Uncovering the doping mechanism of nitric oxide in high-performance P-type WSe2 transistors

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hao-Yu Lan, Chih-Pin Lin, Lina Liu, Jun Cai, Zheng Sun, Peng Wu, Yuanqiu Tan, Shao-Heng Yang, Tuo-Hung Hou, Joerg Appenzeller, Zhihong Chen
{"title":"Uncovering the doping mechanism of nitric oxide in high-performance P-type WSe2 transistors","authors":"Hao-Yu Lan, Chih-Pin Lin, Lina Liu, Jun Cai, Zheng Sun, Peng Wu, Yuanqiu Tan, Shao-Heng Yang, Tuo-Hung Hou, Joerg Appenzeller, Zhihong Chen","doi":"10.1038/s41467-025-59423-9","DOIUrl":null,"url":null,"abstract":"<p>Atomically thin two-dimensional (2D) semiconductors are promising candidates for beyond-silicon electronic devices. However, an excessive contact resistance due to ineffective or non-existent doping techniques hinders their technological readiness. Here, we unveil the doping mechanism of pure nitric oxide and demonstrate its effectiveness on wafer-scale grown monolayer and bilayer tungsten diselenide (1L- and 2L-WSe<sub>2</sub>) transistors, where doping bands induced by nitric oxide can realign the Schottky barrier and approach p-type unipolar transport. This doping approach, combined with a scaled high-κ dielectric, yields WSe<sub>2</sub> transistors with high performance metrics. For monolayer WSe<sub>2</sub>, we achieved an on-state current of 300 μA/μm (at a drain-to-source voltage of –1 V and overdrive voltage of –0.8 V), contact resistance of 875 Ω·μm, peak transconductance of 400 μS/μm, and a subthreshold swing of 70 mV/dec, while preserving on/off ratios &gt;10<sup>9</sup>, minimal variability, and good stability over 24 days under moderate thermal conditions. For bilayer WSe<sub>2</sub>, the devices exhibit an on-state current of 448 μA/μm and contact resistance of 390 Ω·μm, further showcasing the scalability and effectiveness of the NO doping method. Our findings establish NO doping as a promising technique for realizing high-performance p-type 2D transistors and advancing next-generation ultra-scaled electronic devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"36 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59423-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Atomically thin two-dimensional (2D) semiconductors are promising candidates for beyond-silicon electronic devices. However, an excessive contact resistance due to ineffective or non-existent doping techniques hinders their technological readiness. Here, we unveil the doping mechanism of pure nitric oxide and demonstrate its effectiveness on wafer-scale grown monolayer and bilayer tungsten diselenide (1L- and 2L-WSe2) transistors, where doping bands induced by nitric oxide can realign the Schottky barrier and approach p-type unipolar transport. This doping approach, combined with a scaled high-κ dielectric, yields WSe2 transistors with high performance metrics. For monolayer WSe2, we achieved an on-state current of 300 μA/μm (at a drain-to-source voltage of –1 V and overdrive voltage of –0.8 V), contact resistance of 875 Ω·μm, peak transconductance of 400 μS/μm, and a subthreshold swing of 70 mV/dec, while preserving on/off ratios >109, minimal variability, and good stability over 24 days under moderate thermal conditions. For bilayer WSe2, the devices exhibit an on-state current of 448 μA/μm and contact resistance of 390 Ω·μm, further showcasing the scalability and effectiveness of the NO doping method. Our findings establish NO doping as a promising technique for realizing high-performance p-type 2D transistors and advancing next-generation ultra-scaled electronic devices.

Abstract Image

揭示了一氧化氮在高性能p型WSe2晶体管中的掺杂机理
原子薄的二维(2D)半导体是超硅电子器件的有前途的候选者。然而,由于无效或不存在的掺杂技术导致的过度接触电阻阻碍了它们的技术准备。在这里,我们揭示了纯一氧化氮的掺杂机制,并证明了其在晶圆尺度生长的单层和双层二硒化钨(1L-和2L-WSe2)晶体管上的有效性,其中一氧化氮诱导的掺杂能带可以重新排列肖特基势垒并接近p型单极输运。这种掺杂方法与缩放的高κ介电介质相结合,产生了具有高性能指标的WSe2晶体管。对于单层WSe2,我们实现了导通电流为300 μA/μm(漏源电压为-1 V,过载电压为-0.8 V),接触电阻为875 Ω·μm,峰值跨导为400 μS/μm,亚阈值摆幅为70 mV/dec,同时保持了通断比>;109,变异性最小,并且在中等热条件下具有良好的24天稳定性。对于双层WSe2,器件的导通电流为448 μA/μm,接触电阻为390 Ω·μm,进一步证明了NO掺杂方法的可扩展性和有效性。我们的研究结果表明,NO掺杂是实现高性能p型2D晶体管和推进下一代超大尺寸电子器件的有前途的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信