Site-Specific Spin State Modulation in Spinel Oxides for Enhanced Nonradical Oxidation

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jingdan Shi, Yaxin Cheng, Ting Wang, Yanhua Peng, Xinlong Lin, Bing Tang, Mingbao Feng, Zechao Zhuang, Yuanmiao Sun, Xin Yu, Zhichuan J. Xu
{"title":"Site-Specific Spin State Modulation in Spinel Oxides for Enhanced Nonradical Oxidation","authors":"Jingdan Shi, Yaxin Cheng, Ting Wang, Yanhua Peng, Xinlong Lin, Bing Tang, Mingbao Feng, Zechao Zhuang, Yuanmiao Sun, Xin Yu, Zhichuan J. Xu","doi":"10.1002/anie.202504189","DOIUrl":null,"url":null,"abstract":"Spinel oxides hold tremendous potential for driving advanced oxidation processes, yet the underlying mechanism for maximizing their activity remains unclear. In this study, we leverage tetrahedral and octahedral site interactions in MnxCo3-xO4 to modulate the spin states, specifically spin alignment and spin moment, thereby enhancing periodate (PI) activation and catalytic performance in contaminant degradation. Through combined experimental and density functional theory (DFT) analyses, we elucidate the role of spin alignment at synergetic tetrahedral and octahedral sites in facilitating a quantum spin exchange interactions (QSEI) with an efficient electronic spin channel for charge transfer. Meanwhile, the engineered high spin configuration in CoMn2O4 raises the d-band center, favoring stable PI* surface complex formation and accelerating the rate-determining desorption of IO3- with a lower -ICOHP value during the catalytic degradation of ciprofloxacin. As a result, the fine-tuned spin state of CoMn2O4 leads to enhanced overall reaction kinetics, with a 2.5-fold increase compared to MnCo2O4and up to 22-fold increase compared to the octahedrally-active only catalysts. Such a site-specific modulation has been found applicable to other spinel oxides, enlightening fine-tuned electronic structure for maximizing catalytic performance.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"70 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202504189","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spinel oxides hold tremendous potential for driving advanced oxidation processes, yet the underlying mechanism for maximizing their activity remains unclear. In this study, we leverage tetrahedral and octahedral site interactions in MnxCo3-xO4 to modulate the spin states, specifically spin alignment and spin moment, thereby enhancing periodate (PI) activation and catalytic performance in contaminant degradation. Through combined experimental and density functional theory (DFT) analyses, we elucidate the role of spin alignment at synergetic tetrahedral and octahedral sites in facilitating a quantum spin exchange interactions (QSEI) with an efficient electronic spin channel for charge transfer. Meanwhile, the engineered high spin configuration in CoMn2O4 raises the d-band center, favoring stable PI* surface complex formation and accelerating the rate-determining desorption of IO3- with a lower -ICOHP value during the catalytic degradation of ciprofloxacin. As a result, the fine-tuned spin state of CoMn2O4 leads to enhanced overall reaction kinetics, with a 2.5-fold increase compared to MnCo2O4and up to 22-fold increase compared to the octahedrally-active only catalysts. Such a site-specific modulation has been found applicable to other spinel oxides, enlightening fine-tuned electronic structure for maximizing catalytic performance.
尖晶石氧化物中增强非自由基氧化的位点特异性自旋态调制
尖晶石氧化物在推动高级氧化过程中具有巨大的潜力,然而最大化其活性的潜在机制尚不清楚。在这项研究中,我们利用MnxCo3-xO4中的四面体和八面体位点相互作用来调节自旋状态,特别是自旋排列和自旋力矩,从而提高高碘酸盐(PI)的活化和污染物降解的催化性能。通过结合实验和密度泛函理论(DFT)分析,我们阐明了协同四面体和八面体位点上的自旋排列在促进量子自旋交换相互作用(QSEI)中的作用,并通过有效的电子自旋通道进行电荷转移。同时,CoMn2O4的高自旋构型提高了d带中心,有利于稳定的PI*表面络合物的形成,加速了催化降解环丙沙星过程中- icohp值较低的IO3-的速率决定型脱附。结果表明,CoMn2O4的微调自旋态导致了整体反应动力学的增强,比mnco2o4提高了2.5倍,比八面体活性催化剂提高了22倍。这种位点特异性调制已被发现适用于其他尖晶石氧化物,启发微调电子结构以最大化催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信