High conductivity and a large specific surface area triggered electrochemical properties of MnFe2O4-CNTs nanocomposites for energy storage applications

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Hamza Nawaz, Javed Iqbal, Sobia Jabeen, M. Imran Shahzad, Naeem Ahmad
{"title":"High conductivity and a large specific surface area triggered electrochemical properties of MnFe2O4-CNTs nanocomposites for energy storage applications","authors":"Hamza Nawaz, Javed Iqbal, Sobia Jabeen, M. Imran Shahzad, Naeem Ahmad","doi":"10.1016/j.jallcom.2025.180773","DOIUrl":null,"url":null,"abstract":"In addressing the demand for high-energy-density supercapacitors, the development of electrode materials with a wide potential range and high specific capacitance is crucial for energy storage nanodevices. Ferrite-based nanocomposites are a promising group for electrodes. This study conducts a thorough examination of the structural and electrochemical properties of (MnFe<sub>2</sub>O<sub>4</sub>)<sub>1-x(</sub>CNTs)<sub>x</sub> nanocomposites (where x= 0, 0.20, 0.40, 1). MnFe<sub>2</sub>O<sub>4</sub> based nanocomposites have been synthesized using a simple, cost-effective, and versatile chemical route through an ex-situ approach. The resulting nanocomposites display a desired pure polycrystalline structure, nanostructured morphology, defective vibrational bonding, and a tuned bandgap toward the visible range. These nanocomposites demonstrate superior electrochemical performance in KOH electrolyte, as compared to an acidic environment. Notably, the (MnFe<sub>2</sub>O<sub>4</sub>)<sub>0.60</sub>(CNTs)<sub>0.40</sub> nanocomposite exhibits a high specific capacitance of 652 Fg<sup>-1</sup> at 10 mVs<sup>-1</sup>, which is twice that of the individual host matrix MnFe<sub>2</sub>O<sub>4</sub>. Additionally, the nanocomposite maintains good cycling stability, retaining up to 81% of its capacity over 1500 cycles with an ESR value of 0.432Ω. The energy and power densities of the nanocomposite as an electrode for supercapacitors have significantly improved to 20.4<!-- --> <!-- -->Wh/Kg and 900<!-- --> <!-- -->W/Kg, respectively. This recent work offers a new approach to enhance the performance of MnFe<sub>2</sub>O<sub>4</sub>-CNTs nanocomposites in environmental and energy storage applications.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"70 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.180773","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In addressing the demand for high-energy-density supercapacitors, the development of electrode materials with a wide potential range and high specific capacitance is crucial for energy storage nanodevices. Ferrite-based nanocomposites are a promising group for electrodes. This study conducts a thorough examination of the structural and electrochemical properties of (MnFe2O4)1-x(CNTs)x nanocomposites (where x= 0, 0.20, 0.40, 1). MnFe2O4 based nanocomposites have been synthesized using a simple, cost-effective, and versatile chemical route through an ex-situ approach. The resulting nanocomposites display a desired pure polycrystalline structure, nanostructured morphology, defective vibrational bonding, and a tuned bandgap toward the visible range. These nanocomposites demonstrate superior electrochemical performance in KOH electrolyte, as compared to an acidic environment. Notably, the (MnFe2O4)0.60(CNTs)0.40 nanocomposite exhibits a high specific capacitance of 652 Fg-1 at 10 mVs-1, which is twice that of the individual host matrix MnFe2O4. Additionally, the nanocomposite maintains good cycling stability, retaining up to 81% of its capacity over 1500 cycles with an ESR value of 0.432Ω. The energy and power densities of the nanocomposite as an electrode for supercapacitors have significantly improved to 20.4 Wh/Kg and 900 W/Kg, respectively. This recent work offers a new approach to enhance the performance of MnFe2O4-CNTs nanocomposites in environmental and energy storage applications.
高导电性和大比表面积触发了MnFe2O4-CNTs纳米复合材料的电化学性能,用于储能应用
为了满足对高能量密度超级电容器的需求,开发具有宽电位范围和高比电容的电极材料是储能纳米器件的关键。铁氧体基纳米复合材料是一种很有前途的电极材料。本研究对(MnFe2O4)1-x(CNTs)x纳米复合材料(其中x= 0,0.20, 0.40, 1)的结构和电化学性能进行了深入的研究。MnFe2O4基纳米复合材料是一种简单、经济、通用的化学合成方法。所得到的纳米复合材料具有理想的纯多晶结构、纳米结构形态、有缺陷的振动键和向可见光范围调谐的带隙。与酸性环境相比,这些纳米复合材料在KOH电解质中表现出优越的电化学性能。值得注意的是,(MnFe2O4)0.60(CNTs)0.40纳米复合材料在10 mVs-1下具有652 gf -1的高比电容,是单独基质MnFe2O4的两倍。此外,纳米复合材料保持了良好的循环稳定性,在1500次循环中保持了81%的容量,ESR值为0.432Ω。纳米复合材料作为超级电容器电极的能量和功率密度分别显著提高到20.4 Wh/Kg和900 W/Kg。这项最新研究为提高MnFe2O4-CNTs纳米复合材料在环境和能源存储方面的性能提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信