Kirstine Ravn, Leonardo Cobuccio, Rasa Audange Muktupavela, Jonas Meisner, Lasse Schnell Danielsen, Michael Eriksen Benros, Thorfinn Sand Korneliussen, Martin Sikora, Eske Willerslev, Morten E. Allentoft, Evan K. Irving-Pease, Simon Rasmussen
{"title":"Tracing the evolutionary history of the CCR5delta32 deletion via ancient and modern genomes","authors":"Kirstine Ravn, Leonardo Cobuccio, Rasa Audange Muktupavela, Jonas Meisner, Lasse Schnell Danielsen, Michael Eriksen Benros, Thorfinn Sand Korneliussen, Martin Sikora, Eske Willerslev, Morten E. Allentoft, Evan K. Irving-Pease, Simon Rasmussen","doi":"10.1016/j.cell.2025.04.015","DOIUrl":null,"url":null,"abstract":"The chemokine receptor variant CCR5delta32 is linked to HIV-1 resistance and other conditions. Its evolutionary history and allele frequency (10%–16%) in European populations have been extensively debated. We provide a detailed perspective of the evolutionary history of the deletion through time and space. We discovered that the CCR5delta32 allele arose on a pre-existing haplotype consisting of 84 variants. Using this information, we developed a haplotype-aware probabilistic model to screen 934 low-coverage ancient genomes and traced the origin of the CCR5delta32 deletion to at least 6,700 years before the present (BP) in the Western Eurasian Steppe region. Furthermore, we present strong evidence for positive selection acting upon the CCR5delta32 haplotype between 8,000 and 2,000 years BP in Western Eurasia and show that the presence of the haplotype in Latin America can be explained by post-Columbian genetic exchanges. Finally, we point to complex CCR5delta32 genotype-haplotype-phenotype relationships, which demand consideration when targeting the CCR5 receptor for therapeutic strategies.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"113 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.04.015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The chemokine receptor variant CCR5delta32 is linked to HIV-1 resistance and other conditions. Its evolutionary history and allele frequency (10%–16%) in European populations have been extensively debated. We provide a detailed perspective of the evolutionary history of the deletion through time and space. We discovered that the CCR5delta32 allele arose on a pre-existing haplotype consisting of 84 variants. Using this information, we developed a haplotype-aware probabilistic model to screen 934 low-coverage ancient genomes and traced the origin of the CCR5delta32 deletion to at least 6,700 years before the present (BP) in the Western Eurasian Steppe region. Furthermore, we present strong evidence for positive selection acting upon the CCR5delta32 haplotype between 8,000 and 2,000 years BP in Western Eurasia and show that the presence of the haplotype in Latin America can be explained by post-Columbian genetic exchanges. Finally, we point to complex CCR5delta32 genotype-haplotype-phenotype relationships, which demand consideration when targeting the CCR5 receptor for therapeutic strategies.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.