Micromachined Double-Membrane Mechanically Tunable Metamaterial for Thermal Infrared Filtering

IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Oleg Bannik, Fedor Kovalev, Mingkai Liu, Michal Zawierta, Dilusha Silva, Lorenzo Faraone, Mariusz Martyniuk, Ilya Shadrivov
{"title":"Micromachined Double-Membrane Mechanically Tunable Metamaterial for Thermal Infrared Filtering","authors":"Oleg Bannik,&nbsp;Fedor Kovalev,&nbsp;Mingkai Liu,&nbsp;Michal Zawierta,&nbsp;Dilusha Silva,&nbsp;Lorenzo Faraone,&nbsp;Mariusz Martyniuk,&nbsp;Ilya Shadrivov","doi":"10.1002/adpr.202400185","DOIUrl":null,"url":null,"abstract":"<p>\nA mechanically tunable metamaterial concept for transmissive spectral discrimination within the long-wavelength infrared (LWIR) range (8–12 μm) is proposed and validated. The metamaterial consists of a periodically perforated gold membrane that exhibits the extraordinary optical transmission (EOT) effect, combined with a parallel silicon membrane separated by an air gap. This structure acts as a band-pass filter, with its spectral position highly sensitive to the separation gap between the membranes, which influences the resonance conditions for EOT. Numerical simulations predict tunability across the entire LWIR range with a membrane displacement of just 0.5 μm. This concept is experimentally demonstrated through vertical electrostatic actuation of the silicon membrane relative to the gold layer facilitated by a micro-electromechanical systems (MEMS) approach. The measured optical transmission of the fabricated MEMS-enabled, spectrally tunable plasmonic metamaterial shows good agreement with the numerically modeled spectral filter characteristics. Further refinement of this method could pave the way for a variety of low-cost, low-power miniature devices, enhancing spectroscopy and multispectral imaging capabilities in the thermal infrared range.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 5","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400185","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A mechanically tunable metamaterial concept for transmissive spectral discrimination within the long-wavelength infrared (LWIR) range (8–12 μm) is proposed and validated. The metamaterial consists of a periodically perforated gold membrane that exhibits the extraordinary optical transmission (EOT) effect, combined with a parallel silicon membrane separated by an air gap. This structure acts as a band-pass filter, with its spectral position highly sensitive to the separation gap between the membranes, which influences the resonance conditions for EOT. Numerical simulations predict tunability across the entire LWIR range with a membrane displacement of just 0.5 μm. This concept is experimentally demonstrated through vertical electrostatic actuation of the silicon membrane relative to the gold layer facilitated by a micro-electromechanical systems (MEMS) approach. The measured optical transmission of the fabricated MEMS-enabled, spectrally tunable plasmonic metamaterial shows good agreement with the numerically modeled spectral filter characteristics. Further refinement of this method could pave the way for a variety of low-cost, low-power miniature devices, enhancing spectroscopy and multispectral imaging capabilities in the thermal infrared range.

Abstract Image

用于热红外过滤的微加工双膜机械可调谐超材料
提出了一种用于长波红外(LWIR)范围(8 ~ 12 μm)透射光谱识别的机械可调谐超材料概念,并对其进行了验证。这种超材料由具有非凡光传输(EOT)效应的周期性穿孔金膜和由气隙分隔的平行硅膜组成。该结构作为带通滤波器,其光谱位置对膜间的分离间隙高度敏感,从而影响EOT的共振条件。数值模拟预测了在整个LWIR范围内,膜位移仅为0.5 μm时的可调性。这个概念是通过实验证明,通过垂直静电驱动相对于金层的硅膜由微机电系统(MEMS)的方法促进。制备的mems使能的光谱可调谐等离子体超材料的光传输测量结果与数值模拟的光谱滤波器特性吻合良好。这种方法的进一步改进可以为各种低成本、低功耗的微型器件铺平道路,增强热红外范围内的光谱和多光谱成像能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信