{"title":"Quantum chaos in Liouville CFT","authors":"Julian Sonner, Benjamin Strittmatter","doi":"10.1007/JHEP05(2025)017","DOIUrl":null,"url":null,"abstract":"<p>Fast scrambling is a distinctive feature of quantum gravity, which by means of holography is closely tied to the behaviour of large-<i>c</i> conformal field theories. We study this phenomenon in the context of semiclassical Liouville theory, providing both insights into the mechanism of scrambling in CFTs and into the structure of Liouville theory, finding that it exhibits a maximal Lyapunov exponent despite not featuring the identity in its spectrum. However, as we show, the states contributing to the relevant correlation function can be thought of as dressed scramblons. At a technical level we first use the path integral picture in order to derive the Euclidean four-point function in an explicit compact form. Next, we demonstrate its equivalence to a conformal block expansion, revealing an explicit but non-local map between path integral saddles and conformal blocks. By analytically continuing both expressions to Lorentzian times, we obtain two equivalent formulations of the OTOC, which we use to study the onset of chaos in Liouville theory. We take advantage of the compact form in order to extract a Lyapunov exponent and a scrambling time. From the conformal block expansion formulation of the OTOC we learn that scrambling shifts the dominance of conformal blocks from heavy primaries at early times to the lightest primary at late times. Finally, we discuss our results in the context of holography.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)017.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)017","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Fast scrambling is a distinctive feature of quantum gravity, which by means of holography is closely tied to the behaviour of large-c conformal field theories. We study this phenomenon in the context of semiclassical Liouville theory, providing both insights into the mechanism of scrambling in CFTs and into the structure of Liouville theory, finding that it exhibits a maximal Lyapunov exponent despite not featuring the identity in its spectrum. However, as we show, the states contributing to the relevant correlation function can be thought of as dressed scramblons. At a technical level we first use the path integral picture in order to derive the Euclidean four-point function in an explicit compact form. Next, we demonstrate its equivalence to a conformal block expansion, revealing an explicit but non-local map between path integral saddles and conformal blocks. By analytically continuing both expressions to Lorentzian times, we obtain two equivalent formulations of the OTOC, which we use to study the onset of chaos in Liouville theory. We take advantage of the compact form in order to extract a Lyapunov exponent and a scrambling time. From the conformal block expansion formulation of the OTOC we learn that scrambling shifts the dominance of conformal blocks from heavy primaries at early times to the lightest primary at late times. Finally, we discuss our results in the context of holography.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).