Multi-model environmental modelling of energy-exergy efficiency using GUI-based aided design tools integrated with dependency feature analysis

Ismail A. Mahmoud , Abubakar D. Maiwada , Sagir Jibrin Kawu , Mahmud M. Jibril , Jamilu Usman , Abdullahi G. Usman , Sani I. Abba
{"title":"Multi-model environmental modelling of energy-exergy efficiency using GUI-based aided design tools integrated with dependency feature analysis","authors":"Ismail A. Mahmoud ,&nbsp;Abubakar D. Maiwada ,&nbsp;Sagir Jibrin Kawu ,&nbsp;Mahmud M. Jibril ,&nbsp;Jamilu Usman ,&nbsp;Abdullahi G. Usman ,&nbsp;Sani I. Abba","doi":"10.1016/j.hybadv.2025.100493","DOIUrl":null,"url":null,"abstract":"<div><div>This research introduces a comprehensive multi-model framework for assessing energy-exergy (EE) efficiency, utilizing graphical user interface (GUI) based design tools in conjunction with linear-feature optimization techniques. The performance of several machine learning (ML) models, including the Adaptive Neuro-Fuzzy Inference System (ANFIS), Nonlinear Auto Regressive with exogenous inputs (NARX), Backpropagation Feedforward Neural Network (BFNN), Extreme Learning Machine Network (ELMN), and Feedforward Neural Network (FFNN) was evaluated, utilizing key statistical metrics throughout both training and testing phases. The results reveal that the ANFIS-M2, NARX-M3, and FFNN-M1 models achieved exemplary training accuracy, attaining an R<sup>2</sup> value of 1.0, underscoring their capacity to capture intricate nonlinear relationships effectively. Notably, during the testing phase, the FFNN-M1 model sustained its perfect R<sup>2</sup>, while both ANFIS-M2 and NARX-M3 demonstrated robust predictive capabilities with R<sup>2</sup> values of 0.95. The BFNN and ELMN models also displayed commendable performance, yielding R<sup>2</sup> values between 0.75 and 0.97. In contrast, the ANFIS-M3 and BFNN-M3 models exhibited comparatively lower accuracy, recording R<sup>2</sup> values below 0.7 during testing. These findings underscore the efficacy of integrating GUI-based tools with linear-feature optimization for predicting exFergy efficiency. The study highlights the promising potential of FFNN and ANFIS models in enhancing the optimization of energy systems, thereby facilitating the development of more efficient computational frameworks for energy modeling applications.</div></div>","PeriodicalId":100614,"journal":{"name":"Hybrid Advances","volume":"10 ","pages":"Article 100493"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hybrid Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773207X25001174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research introduces a comprehensive multi-model framework for assessing energy-exergy (EE) efficiency, utilizing graphical user interface (GUI) based design tools in conjunction with linear-feature optimization techniques. The performance of several machine learning (ML) models, including the Adaptive Neuro-Fuzzy Inference System (ANFIS), Nonlinear Auto Regressive with exogenous inputs (NARX), Backpropagation Feedforward Neural Network (BFNN), Extreme Learning Machine Network (ELMN), and Feedforward Neural Network (FFNN) was evaluated, utilizing key statistical metrics throughout both training and testing phases. The results reveal that the ANFIS-M2, NARX-M3, and FFNN-M1 models achieved exemplary training accuracy, attaining an R2 value of 1.0, underscoring their capacity to capture intricate nonlinear relationships effectively. Notably, during the testing phase, the FFNN-M1 model sustained its perfect R2, while both ANFIS-M2 and NARX-M3 demonstrated robust predictive capabilities with R2 values of 0.95. The BFNN and ELMN models also displayed commendable performance, yielding R2 values between 0.75 and 0.97. In contrast, the ANFIS-M3 and BFNN-M3 models exhibited comparatively lower accuracy, recording R2 values below 0.7 during testing. These findings underscore the efficacy of integrating GUI-based tools with linear-feature optimization for predicting exFergy efficiency. The study highlights the promising potential of FFNN and ANFIS models in enhancing the optimization of energy systems, thereby facilitating the development of more efficient computational frameworks for energy modeling applications.
使用基于gui的辅助设计工具集成依赖特征分析的多模型能源-能源效率环境建模
本研究介绍了一个综合的多模型框架,用于评估能源-用能(EE)效率,利用基于图形用户界面(GUI)的设计工具与线性特征优化技术相结合。几种机器学习(ML)模型的性能,包括自适应神经模糊推理系统(ANFIS),外生输入非线性自回归(NARX),反向传播前馈神经网络(BFNN),极限学习机网络(ELMN)和前馈神经网络(FFNN),利用整个训练和测试阶段的关键统计指标进行评估。结果表明,anfiss - m2、NARX-M3和FFNN-M1模型达到了典型的训练精度,R2值为1.0,表明它们能够有效捕获复杂的非线性关系。值得注意的是,在测试阶段,FFNN-M1模型保持了完美的R2,而anfiss - m2和NARX-M3均表现出稳健的预测能力,R2值为0.95。BFNN和ELMN模型也表现出了良好的性能,R2值在0.75到0.97之间。相比之下,anfiss - m3和BFNN-M3模型的准确率相对较低,在测试时记录的R2值小于0.7。这些发现强调了将基于gui的工具与线性特征优化相结合以预测能源效率的有效性。该研究强调了FFNN和ANFIS模型在增强能源系统优化方面的巨大潜力,从而促进了更有效的能源建模应用计算框架的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信