Number of facets of symmetric edge polytopes arising from join graphs

IF 1 3区 数学 Q1 MATHEMATICS
Aki Mori , Kenta Mori , Hidefumi Ohsugi
{"title":"Number of facets of symmetric edge polytopes arising from join graphs","authors":"Aki Mori ,&nbsp;Kenta Mori ,&nbsp;Hidefumi Ohsugi","doi":"10.1016/j.ejc.2025.104165","DOIUrl":null,"url":null,"abstract":"<div><div>Symmetric edge polytopes of graphs are important object in Ehrhart theory, and have an application to Kuramoto models. In the present paper, we study the upper and lower bounds for the number of facets of symmetric edge polytopes of connected graphs conjectured by Braun and Bruegge. In particular, we show that their conjecture is true for any graph that is the join of two graphs (equivalently, for any connected graph whose complement graph is not connected). It is known that any symmetric edge polytope is a centrally symmetric reflexive polytope. Hence our results give a partial answer to Nill’s conjecture: the number of facets of a <span><math><mi>d</mi></math></span>-dimensional reflexive polytope is at most <span><math><msup><mrow><mn>6</mn></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104165"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000484","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Symmetric edge polytopes of graphs are important object in Ehrhart theory, and have an application to Kuramoto models. In the present paper, we study the upper and lower bounds for the number of facets of symmetric edge polytopes of connected graphs conjectured by Braun and Bruegge. In particular, we show that their conjecture is true for any graph that is the join of two graphs (equivalently, for any connected graph whose complement graph is not connected). It is known that any symmetric edge polytope is a centrally symmetric reflexive polytope. Hence our results give a partial answer to Nill’s conjecture: the number of facets of a d-dimensional reflexive polytope is at most 6d/2.
由连接图产生的对称边多面体的面数
图的对称边多边形是Ehrhart理论中的重要对象,在Kuramoto模型中也有应用。本文研究了Braun和Bruegge猜想的连通图对称边多面体的面数的上界和下界。特别地,我们证明了他们的猜想对于任何两个图的连接都是成立的(等价地,对于补图不连通的任何连通图)。已知任何对称边多面体都是中心对称自反多面体。因此,我们的结果给出了Nill猜想的部分答案:d维自反多面体的面数最多为6d/2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信