Uncertainty-Aware Dynamic Fusion Network with Criss-Cross Attention for multimodal remote sensing land cover classification

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hui Wang , Youxiang Huang , Hao Huang , Yu Wang , Jun Li , Guan Gui
{"title":"Uncertainty-Aware Dynamic Fusion Network with Criss-Cross Attention for multimodal remote sensing land cover classification","authors":"Hui Wang ,&nbsp;Youxiang Huang ,&nbsp;Hao Huang ,&nbsp;Yu Wang ,&nbsp;Jun Li ,&nbsp;Guan Gui","doi":"10.1016/j.inffus.2025.103249","DOIUrl":null,"url":null,"abstract":"<div><div>Multimodal Remote Sensing Land Cover Classification (LCC) is a promising technology that integrates multi-source remote sensing data to improve classification accuracy and robustness. However, existing multimodal fusion methods are primarily static, failing to account for the variability of information in each modality and sample. In this paper, we propose an Uncertainty-aware Dynamic Fusion Network (UDFNet) for multimodal land cover classification to address this issue. UDFNet consists of three modules: a feature extraction and propagation module, a global feature association module based on Criss-Cross Attention (CCA), and a dynamic fusion module that assigns weights to each modality based on their respective uncertainties, measured using energy scores. Extensive experiments conducted on the Berlin, Augsburg, MUUFL, and Trento public datasets show that our proposed method achieves superior performance compared to state-of-the-art approaches. Specifically, UDFNet achieved Overall Accuracy (OA) of 86.38%, 94.56%, 95.08%, and 99.76% on the Berlin, Augsburg, MUUFL, and Trento datasets, respectively, surpassing existing methods by up to 5% in OA. These results highlight the critical role of each module in enhancing classification accuracy and robustness.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"123 ","pages":"Article 103249"},"PeriodicalIF":14.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525003227","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal Remote Sensing Land Cover Classification (LCC) is a promising technology that integrates multi-source remote sensing data to improve classification accuracy and robustness. However, existing multimodal fusion methods are primarily static, failing to account for the variability of information in each modality and sample. In this paper, we propose an Uncertainty-aware Dynamic Fusion Network (UDFNet) for multimodal land cover classification to address this issue. UDFNet consists of three modules: a feature extraction and propagation module, a global feature association module based on Criss-Cross Attention (CCA), and a dynamic fusion module that assigns weights to each modality based on their respective uncertainties, measured using energy scores. Extensive experiments conducted on the Berlin, Augsburg, MUUFL, and Trento public datasets show that our proposed method achieves superior performance compared to state-of-the-art approaches. Specifically, UDFNet achieved Overall Accuracy (OA) of 86.38%, 94.56%, 95.08%, and 99.76% on the Berlin, Augsburg, MUUFL, and Trento datasets, respectively, surpassing existing methods by up to 5% in OA. These results highlight the critical role of each module in enhancing classification accuracy and robustness.
基于交叉关注的多模态遥感土地覆盖分类不确定性动态融合网络
多模态遥感土地覆盖分类(LCC)是一种整合多源遥感数据以提高分类精度和鲁棒性的技术。然而,现有的多模态融合方法主要是静态的,未能考虑到每种模态和样本中信息的可变性。本文提出了一种基于不确定性感知的多模式土地覆盖分类动态融合网络(UDFNet)。UDFNet由三个模块组成:一个特征提取和传播模块,一个基于交叉关注(CCA)的全局特征关联模块,以及一个动态融合模块,该模块根据每个模态各自的不确定性(使用能量分数测量)分配权重。在柏林,奥格斯堡,MUUFL和Trento公共数据集上进行的大量实验表明,与最先进的方法相比,我们提出的方法具有优越的性能。具体而言,UDFNet在Berlin、Augsburg、MUUFL和Trento数据集上的总体准确率(Overall Accuracy, OA)分别为86.38%、94.56%、95.08%和99.76%,在OA方面比现有方法高出5%。这些结果突出了每个模块在提高分类精度和鲁棒性方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信