An answer to a problem on topologies of function spaces on metric measure spaces

IF 0.5 4区 数学 Q3 MATHEMATICS
Hanbiao Yang , Kaihong Dong , Yingying Jin
{"title":"An answer to a problem on topologies of function spaces on metric measure spaces","authors":"Hanbiao Yang ,&nbsp;Kaihong Dong ,&nbsp;Yingying Jin","doi":"10.1016/j.topol.2025.109391","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>X</em> be a metric measure space. In the paper K. Koshino (2020) <span><span>[6]</span></span>, it was proved that if <em>X</em> satisfies some conditions, then the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> on <em>X</em> is homeomorphic to the product space <em>s</em> of countably infinitely many open intervals <span><math><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, and the subspace <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> consisting of uniformly continuous maps is also homeomorphic to the subspace <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of <em>s</em> consisting of sequences converging to 0. Then it was asked whether or not the pair <span><math><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>)</mo></math></span> is homeomorphic to <span><math><mo>(</mo><mi>s</mi><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>. In this note, we will present some examples of metric measure spaces <em>X</em> in the both cases where those pairs are homeomorphic and not, and show that they are not homeomorphic if <em>X</em> is a Euclidean space or its cube with the usual metric and the Lebesgue measure.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"370 ","pages":"Article 109391"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125001890","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a metric measure space. In the paper K. Koshino (2020) [6], it was proved that if X satisfies some conditions, then the Lp-space Lp(X) on X is homeomorphic to the product space s of countably infinitely many open intervals (1,1), and the subspace Cu(X) of Lp(X) consisting of uniformly continuous maps is also homeomorphic to the subspace c0 of s consisting of sequences converging to 0. Then it was asked whether or not the pair (Lp(X),Cu(X)) is homeomorphic to (s,c0). In this note, we will present some examples of metric measure spaces X in the both cases where those pairs are homeomorphic and not, and show that they are not homeomorphic if X is a Euclidean space or its cube with the usual metric and the Lebesgue measure.
度量度量空间上函数空间拓扑问题的解答
设X是一个度量空间。K. Koshino(2020)[6]证明了如果X满足某些条件,则X上的Lp空间Lp(X)同胚于可数无穷多个开区间(- 1,1)的积空间s,由一致连续映射组成的Lp(X)的子空间Cu(X)也同胚于由收敛于0的序列组成的s的子空间c0。然后问这个对(Lp(X),Cu(X))是否同胚于(s,c0)。在这篇文章中,我们将给出一些度量度量空间X的例子,在这两种情况下,这些度量度量空间X是同胚的,而不是同胚的,并证明如果X是欧几里德空间或它的立方体,具有通常的度量和勒贝格测度,它们是不同胚的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信