{"title":"An answer to a problem on topologies of function spaces on metric measure spaces","authors":"Hanbiao Yang , Kaihong Dong , Yingying Jin","doi":"10.1016/j.topol.2025.109391","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>X</em> be a metric measure space. In the paper K. Koshino (2020) <span><span>[6]</span></span>, it was proved that if <em>X</em> satisfies some conditions, then the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> on <em>X</em> is homeomorphic to the product space <em>s</em> of countably infinitely many open intervals <span><math><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, and the subspace <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> consisting of uniformly continuous maps is also homeomorphic to the subspace <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of <em>s</em> consisting of sequences converging to 0. Then it was asked whether or not the pair <span><math><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>)</mo></math></span> is homeomorphic to <span><math><mo>(</mo><mi>s</mi><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>. In this note, we will present some examples of metric measure spaces <em>X</em> in the both cases where those pairs are homeomorphic and not, and show that they are not homeomorphic if <em>X</em> is a Euclidean space or its cube with the usual metric and the Lebesgue measure.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"370 ","pages":"Article 109391"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125001890","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let X be a metric measure space. In the paper K. Koshino (2020) [6], it was proved that if X satisfies some conditions, then the -space on X is homeomorphic to the product space s of countably infinitely many open intervals , and the subspace of consisting of uniformly continuous maps is also homeomorphic to the subspace of s consisting of sequences converging to 0. Then it was asked whether or not the pair is homeomorphic to . In this note, we will present some examples of metric measure spaces X in the both cases where those pairs are homeomorphic and not, and show that they are not homeomorphic if X is a Euclidean space or its cube with the usual metric and the Lebesgue measure.
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.