Enhanced biodegradation of sulfamethazine in swine manure composting: Pathway elucidation, mechanism insights, and optimization of a novel Bacillus sp. strain

IF 4.1 2区 环境科学与生态学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xiaojun Lin , Jingtong Li , Chunyan Chen , Zifeng Luo , Hongxing Tu , Yuwan Pang , Xiujuan Wang , Qianyi Cai , Zebin Wei , Jianfeng Huang , Jingwen Zeng , Jinrong Qiu
{"title":"Enhanced biodegradation of sulfamethazine in swine manure composting: Pathway elucidation, mechanism insights, and optimization of a novel Bacillus sp. strain","authors":"Xiaojun Lin ,&nbsp;Jingtong Li ,&nbsp;Chunyan Chen ,&nbsp;Zifeng Luo ,&nbsp;Hongxing Tu ,&nbsp;Yuwan Pang ,&nbsp;Xiujuan Wang ,&nbsp;Qianyi Cai ,&nbsp;Zebin Wei ,&nbsp;Jianfeng Huang ,&nbsp;Jingwen Zeng ,&nbsp;Jinrong Qiu","doi":"10.1016/j.ibiod.2025.106112","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfamethazine (SMZ), a widely used sulfonamide antibiotic frequently detected in livestock waste streams, requires enhanced microbial degradation strategies to prevent its accumulation and associated environmental hazards. While several microbial strains with SMZ degradation capability have been isolated, comprehensive elucidation of metabolic pathways remains incomplete. This study identified <em>Bacillus</em> sp. strain DLY-11, exhibiting exceptional SMZ degradation performance, from thermally treated swine manure compost substrates. Under optimized parameters (5 % (v/v) bacterial inoculum, 59.7 °C operational temperature, pH 8.08 maintained with buffer system, and 0.4 g/L MgSO<sub>4</sub> supplementation), the strain achieved 97.1 % elimination of 20 mg/L SMZ within 48-h incubation. Metabolic pathway analysis through detected intermediates revealed two distinct biodegradation mechanisms involving sulfonamide bond cleavage, oxidative hydroxylation, sulfur dioxide elimination, ring oxidation, amino group substitution, and glucuronic acid conjugation. These findings enhance understanding of sulfonamide antibiotic catabolism while offering a promising microbial resource for controlling veterinary antibiotic contamination in agro-industrial ecosystems.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"203 ","pages":"Article 106112"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830525001167","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfamethazine (SMZ), a widely used sulfonamide antibiotic frequently detected in livestock waste streams, requires enhanced microbial degradation strategies to prevent its accumulation and associated environmental hazards. While several microbial strains with SMZ degradation capability have been isolated, comprehensive elucidation of metabolic pathways remains incomplete. This study identified Bacillus sp. strain DLY-11, exhibiting exceptional SMZ degradation performance, from thermally treated swine manure compost substrates. Under optimized parameters (5 % (v/v) bacterial inoculum, 59.7 °C operational temperature, pH 8.08 maintained with buffer system, and 0.4 g/L MgSO4 supplementation), the strain achieved 97.1 % elimination of 20 mg/L SMZ within 48-h incubation. Metabolic pathway analysis through detected intermediates revealed two distinct biodegradation mechanisms involving sulfonamide bond cleavage, oxidative hydroxylation, sulfur dioxide elimination, ring oxidation, amino group substitution, and glucuronic acid conjugation. These findings enhance understanding of sulfonamide antibiotic catabolism while offering a promising microbial resource for controlling veterinary antibiotic contamination in agro-industrial ecosystems.

Abstract Image

猪粪堆肥中磺胺乙嗪的生物降解:一种新的芽孢杆菌菌株的途径阐明、机制研究和优化
磺胺乙嗪(SMZ)是一种广泛使用的磺胺类抗生素,经常在牲畜废物流中检测到,需要加强微生物降解策略,以防止其积累和相关的环境危害。虽然已经分离出几种具有SMZ降解能力的微生物菌株,但对其代谢途径的全面阐明仍不完整。本研究从热处理猪粪堆肥基质中鉴定出菌株DLY-11,表现出优异的SMZ降解性能。在最佳接种量为5% (v/v)、操作温度为59.7℃、缓冲液pH为8.08、MgSO4添加量为0.4 g/L的条件下,菌株在培养48 h内对20 mg/L SMZ的去除率达到97.1%。通过检测到的中间体代谢途径分析揭示了两种不同的生物降解机制,包括磺酰胺键裂解、氧化羟基化、二氧化硫消除、环氧化、氨基取代和葡萄糖醛酸偶联。这些发现增强了对磺胺类抗生素分解代谢的认识,同时为控制农工生态系统中的兽医抗生素污染提供了有前途的微生物资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
107
审稿时长
21 days
期刊介绍: International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信