Selection and validation of reference genes for quantitative real-time PCR analysis across tissues at different developmental stages in Taraxacum kok-saghyz
Yongmei Li , Yuan Yao , Tiancheng Xu , Xue Yang , Yuting He , Shengmin Zhang , Qingbiao Xie , Jie Cao , Chaorong Tang , Hui Liu
{"title":"Selection and validation of reference genes for quantitative real-time PCR analysis across tissues at different developmental stages in Taraxacum kok-saghyz","authors":"Yongmei Li , Yuan Yao , Tiancheng Xu , Xue Yang , Yuting He , Shengmin Zhang , Qingbiao Xie , Jie Cao , Chaorong Tang , Hui Liu","doi":"10.1016/j.jplph.2025.154501","DOIUrl":null,"url":null,"abstract":"<div><div>Quantitative real-time polymerase chain reaction (qRT-PCR) is a highly sensitive and widely used method for analyzing gene expression profiles. Accurate qRT-PCR normalization requires the identification of stable reference genes under specific experimental conditions. Although seven reference genes have been used in <em>Taraxacum kok-saghyz</em> (TKS), an alternative natural rubber-producing crop, a systematic identification of reliable internal references for gene expression analysis across tissues at distinct developmental stages of TKS has not been conducted. In this study, we screened 12 candidate reference genes (CRGs) based on RNA-seq data from 26 TKS samples, representing five tissue types and nine developmental stages. The expression levels of the 12 CRGs, along with 7 previously reported reference genes (RRGs), were quantified by qRT-PCR across various tissues and developmental stages. The expression stability of the 19 genes was further evaluated by four commonly used algorithms (geNorm, NormFinder, comparative delta Ct, and BestKeeper), and their results were integrated by RefFinder to generate a comprehensive stability ranking. The final results revealed that <em>TkADF1</em> and <em>TkRPT6A</em> were the most suitable internal control genes for the all-tissue group and leaf samples. <em>TkUPL</em> and <em>TkSIZ1</em> were found to be optimal for root samples, while <em>TkADF1</em> and <em>TkSRPRA</em> were preferred choices for latex samples. Moreover, validation using two rubber biosynthesis-related genes (<em>TkFPS1</em> and <em>TkSRPP2</em>) confirmed the reliability of these recommended genes, showing a strong positive correlation with the RNA-seq data. This study provides reliable reference genes for qRT-PCR normalization in TKS, facilitating future research on developmental regulation and natural rubber biosynthesis.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"309 ","pages":"Article 154501"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161725000835","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Quantitative real-time polymerase chain reaction (qRT-PCR) is a highly sensitive and widely used method for analyzing gene expression profiles. Accurate qRT-PCR normalization requires the identification of stable reference genes under specific experimental conditions. Although seven reference genes have been used in Taraxacum kok-saghyz (TKS), an alternative natural rubber-producing crop, a systematic identification of reliable internal references for gene expression analysis across tissues at distinct developmental stages of TKS has not been conducted. In this study, we screened 12 candidate reference genes (CRGs) based on RNA-seq data from 26 TKS samples, representing five tissue types and nine developmental stages. The expression levels of the 12 CRGs, along with 7 previously reported reference genes (RRGs), were quantified by qRT-PCR across various tissues and developmental stages. The expression stability of the 19 genes was further evaluated by four commonly used algorithms (geNorm, NormFinder, comparative delta Ct, and BestKeeper), and their results were integrated by RefFinder to generate a comprehensive stability ranking. The final results revealed that TkADF1 and TkRPT6A were the most suitable internal control genes for the all-tissue group and leaf samples. TkUPL and TkSIZ1 were found to be optimal for root samples, while TkADF1 and TkSRPRA were preferred choices for latex samples. Moreover, validation using two rubber biosynthesis-related genes (TkFPS1 and TkSRPP2) confirmed the reliability of these recommended genes, showing a strong positive correlation with the RNA-seq data. This study provides reliable reference genes for qRT-PCR normalization in TKS, facilitating future research on developmental regulation and natural rubber biosynthesis.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.