Li Ruiyi, Zhang Qingqing, Li Xiaosuan, Li Nana, Liu Xiaohao, Li Zaijun
{"title":"Strongly coordinated synthesis of high-loading Ta2O5-supported Ru-Fe-Ni single-atom electrocatalyst with enhanced catalytic performance for urea synthesis via multifunctional graphene quantum dot integration","authors":"Li Ruiyi, Zhang Qingqing, Li Xiaosuan, Li Nana, Liu Xiaohao, Li Zaijun","doi":"10.1016/j.jelechem.2025.119163","DOIUrl":null,"url":null,"abstract":"<div><div>Industrial application of oxide-supported single atom catalysts remains many challenges, including poor economic feasibility, insufficient catalytic activity, limited electrical conductivity, and lack of functional diversity. The study reports a coordination-driven synthesis strategy for fabricating tantalum pentoxide-supported ruthenium‑iron‑nickel single atom electrocatalyst (Ru-Fe-Ni/Ta<sub>2</sub>O<sub>5</sub>@DHB-GQD) through metal ion coordination with aspartic acid and histidine-functionalized boron-doped graphene quantum dot (DHB-GQD), followed by controlled annealing. The resulting Ru-Fe-Ni/ Ta<sub>2</sub>O<sub>5</sub>@DHB-GQD offers atomic dispersion of Ru, Fe, and Ni on Ta<sub>2</sub>O<sub>5</sub> with high metal loading of 5.6 wt%. Ta<sub>2</sub>O<sub>5</sub> substrate features unique shear-structure with interconnected tunnels, enabling catalytic reactions to proceed simultaneously on the nanocrystal surfaces and within tunnel walls. Integration of DHB-GQD with Ru, Fe and Ni optimizes tunnel structure, reduces bandgap by 0.8 eV, and establishes efficient electron transfer pathways. Compared to pristine Ta<sub>2</sub>O<sub>5</sub>, engineered catalyst exhibits an enhancement in electrochemical active surface area (>4-fold), electrical conductivity (>53-fold), and K<sup>+</sup> diffusion efficiency (>1564-fold). Experimental analyses coupled with density functional theory calculation demonstrates that trimetallic synergy of Ru, Fe and Ni significantly improves the catalytic activity and selectivity for reduction of NO<sub>3</sub><sup>−</sup> and CO<sub>2</sub> into urea. The Ru-Fe-Ni/ Ta<sub>2</sub>O<sub>5</sub>@DHB-GQD electrocatalyst achieves urea yield of 73.86 mmol g<sup>−1</sup> h<sup>−1</sup> with Faradaic efficiency of 48.5 %, surpassing previously reported counterparts.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"990 ","pages":"Article 119163"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665725002371","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Industrial application of oxide-supported single atom catalysts remains many challenges, including poor economic feasibility, insufficient catalytic activity, limited electrical conductivity, and lack of functional diversity. The study reports a coordination-driven synthesis strategy for fabricating tantalum pentoxide-supported ruthenium‑iron‑nickel single atom electrocatalyst (Ru-Fe-Ni/Ta2O5@DHB-GQD) through metal ion coordination with aspartic acid and histidine-functionalized boron-doped graphene quantum dot (DHB-GQD), followed by controlled annealing. The resulting Ru-Fe-Ni/ Ta2O5@DHB-GQD offers atomic dispersion of Ru, Fe, and Ni on Ta2O5 with high metal loading of 5.6 wt%. Ta2O5 substrate features unique shear-structure with interconnected tunnels, enabling catalytic reactions to proceed simultaneously on the nanocrystal surfaces and within tunnel walls. Integration of DHB-GQD with Ru, Fe and Ni optimizes tunnel structure, reduces bandgap by 0.8 eV, and establishes efficient electron transfer pathways. Compared to pristine Ta2O5, engineered catalyst exhibits an enhancement in electrochemical active surface area (>4-fold), electrical conductivity (>53-fold), and K+ diffusion efficiency (>1564-fold). Experimental analyses coupled with density functional theory calculation demonstrates that trimetallic synergy of Ru, Fe and Ni significantly improves the catalytic activity and selectivity for reduction of NO3− and CO2 into urea. The Ru-Fe-Ni/ Ta2O5@DHB-GQD electrocatalyst achieves urea yield of 73.86 mmol g−1 h−1 with Faradaic efficiency of 48.5 %, surpassing previously reported counterparts.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.