{"title":"Strain effects on optoelectronic and thermoelectric properties of double perovskite Cs2SnPbI6 for photovoltaic applications: DFT study","authors":"Rania Sidi Moumane, Hamid Ez-Zahraouy","doi":"10.1016/j.jpcs.2025.112827","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the potential of Cs<sub>2</sub>SnPbI<sub>6</sub>, a mixed double perovskite, as a promising material for photovoltaic applications. Using density functional theory (DFT), we investigated its crystal structure, optoelectronic properties, and performance under triaxial strain, revealing its tunable direct bandgap. We found that a <span><math><mrow><mn>6</mn><mo>%</mo></mrow></math></span> tensile strain increases the bandgap from <span><math><mrow><mn>0.97</mn><mspace></mspace><mi>e</mi><mi>V</mi></mrow></math></span> to <span><math><mrow><mn>1.444</mn><mspace></mspace><mi>e</mi><mi>V</mi></mrow></math></span>, improving its suitability for solar energy conversion. Under the same strain, the material exhibits a high refractive index of <span><math><mrow><mn>3.13</mn></mrow></math></span> and a strong absorption coefficient of <span><math><mrow><mn>5.45</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mspace></mspace><msup><mrow><mi>c</mi><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, emphasizing its effective light absorption capabilities. Furthermore, analysis of thermoelectric properties indicates a positive Seebeck coefficient, confirming its P-type nature, as well as an electronic figure of merit exceeding <span><math><mrow><mn>0.7</mn></mrow></math></span> at elevated temperatures with <span><math><mrow><mo>+</mo><mn>6</mn><mo>%</mo></mrow></math></span> strain. These findings position Cs<sub>2</sub>SnPbI<sub>6</sub> as a promising material for the next-generation photovoltaic and optoelectronic devices, contributing to the advancement of more stable and sustainable solar energy technologies.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"205 ","pages":"Article 112827"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725002793","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the potential of Cs2SnPbI6, a mixed double perovskite, as a promising material for photovoltaic applications. Using density functional theory (DFT), we investigated its crystal structure, optoelectronic properties, and performance under triaxial strain, revealing its tunable direct bandgap. We found that a tensile strain increases the bandgap from to , improving its suitability for solar energy conversion. Under the same strain, the material exhibits a high refractive index of and a strong absorption coefficient of , emphasizing its effective light absorption capabilities. Furthermore, analysis of thermoelectric properties indicates a positive Seebeck coefficient, confirming its P-type nature, as well as an electronic figure of merit exceeding at elevated temperatures with strain. These findings position Cs2SnPbI6 as a promising material for the next-generation photovoltaic and optoelectronic devices, contributing to the advancement of more stable and sustainable solar energy technologies.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.