{"title":"Chaos expansion solutions of a class of magnetic Schrödinger Wick-type stochastic equations on Rd","authors":"Sandro Coriasco , Stevan Pilipović , Dora Seleši","doi":"10.1016/j.jmaa.2025.129620","DOIUrl":null,"url":null,"abstract":"<div><div>We treat some classes of linear and semilinear stochastic partial differential equations of Schrödinger type on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, involving a non-flat Laplacian, within the framework of white noise analysis, combined with Wiener-Itô chaos expansions and pseudodifferential operator methods. The initial data and potential term of the Schrödinger operator are assumed to be generalized stochastic processes that have spatial dependence. We prove that the equations under consideration have unique solutions in the appropriate (intersections of weighted) Sobolev-Kato-Kondratiev spaces.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129620"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004019","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We treat some classes of linear and semilinear stochastic partial differential equations of Schrödinger type on , involving a non-flat Laplacian, within the framework of white noise analysis, combined with Wiener-Itô chaos expansions and pseudodifferential operator methods. The initial data and potential term of the Schrödinger operator are assumed to be generalized stochastic processes that have spatial dependence. We prove that the equations under consideration have unique solutions in the appropriate (intersections of weighted) Sobolev-Kato-Kondratiev spaces.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.