Chaos expansion solutions of a class of magnetic Schrödinger Wick-type stochastic equations on Rd

IF 1.2 3区 数学 Q1 MATHEMATICS
Sandro Coriasco , Stevan Pilipović , Dora Seleši
{"title":"Chaos expansion solutions of a class of magnetic Schrödinger Wick-type stochastic equations on Rd","authors":"Sandro Coriasco ,&nbsp;Stevan Pilipović ,&nbsp;Dora Seleši","doi":"10.1016/j.jmaa.2025.129620","DOIUrl":null,"url":null,"abstract":"<div><div>We treat some classes of linear and semilinear stochastic partial differential equations of Schrödinger type on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, involving a non-flat Laplacian, within the framework of white noise analysis, combined with Wiener-Itô chaos expansions and pseudodifferential operator methods. The initial data and potential term of the Schrödinger operator are assumed to be generalized stochastic processes that have spatial dependence. We prove that the equations under consideration have unique solutions in the appropriate (intersections of weighted) Sobolev-Kato-Kondratiev spaces.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129620"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004019","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We treat some classes of linear and semilinear stochastic partial differential equations of Schrödinger type on Rd, involving a non-flat Laplacian, within the framework of white noise analysis, combined with Wiener-Itô chaos expansions and pseudodifferential operator methods. The initial data and potential term of the Schrödinger operator are assumed to be generalized stochastic processes that have spatial dependence. We prove that the equations under consideration have unique solutions in the appropriate (intersections of weighted) Sobolev-Kato-Kondratiev spaces.
一类磁性Schrödinger wick型随机方程的混沌展开解
在白噪声分析的框架下,结合Wiener-Itô混沌展开式和伪微分算子方法,研究了Rd上涉及非平坦拉普拉斯算子的若干类Schrödinger型随机偏微分方程。假设Schrödinger算子的初始数据和势项为具有空间依赖性的广义随机过程。我们证明了所考虑的方程在适当的(加权的)Sobolev-Kato-Kondratiev空间的交点上有唯一解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信