The number of zeros of the sum of Abelian integrals satisfying two-dimensional Picard-Fuchs equations

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Changjian Liu , Shaoqing Wang
{"title":"The number of zeros of the sum of Abelian integrals satisfying two-dimensional Picard-Fuchs equations","authors":"Changjian Liu ,&nbsp;Shaoqing Wang","doi":"10.1016/j.bulsci.2025.103643","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is primarily devoted to developing a new criterion to show the upper bound for the number of zeros of the sum of Abelian integrals satisfying two-dimensional Picard-Fuchs equations, which is a generalization of the method by Gavrilov and Iliev (2003) <span><span>[13]</span></span>. The second goal of this paper is to investigate, using our new criterion, the hyperelliptic Abelian integrals related to the period annuli of a Hamiltonian system <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mo>−</mo><mi>y</mi><mo>,</mo><mover><mrow><mi>y</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>x</mi><mo>)</mo></math></span> under the polynomial deformation of degree <em>n</em>, where <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>cos</mi><mo>⁡</mo><mo>(</mo><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>arccos</mi><mo>⁡</mo><mi>x</mi><mo>)</mo></math></span> is the Chebyshev polynomial of the first kind, and to show that for every period annulus of such system, the number of zeros of the hyperelliptic Abelian integral is no more than <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, which is novel up to now.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"203 ","pages":"Article 103643"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000697","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is primarily devoted to developing a new criterion to show the upper bound for the number of zeros of the sum of Abelian integrals satisfying two-dimensional Picard-Fuchs equations, which is a generalization of the method by Gavrilov and Iliev (2003) [13]. The second goal of this paper is to investigate, using our new criterion, the hyperelliptic Abelian integrals related to the period annuli of a Hamiltonian system x˙=y,y˙=Tn+1(x) under the polynomial deformation of degree n, where Tn+1(x)=cos((n+1)arccosx) is the Chebyshev polynomial of the first kind, and to show that for every period annulus of such system, the number of zeros of the hyperelliptic Abelian integral is no more than O(n2), which is novel up to now.
满足二维皮卡德-富克斯方程的阿贝尔积分和的零个数
本文主要是对Gavrilov和Iliev(2003)[13]方法的推广,提出了一个新的证明二维Picard-Fuchs方程的Abelian积分和的零个数上界的判据。本文的第二个目标是调查,使用我们的新标准,相关的超椭圆阿贝尔积分哈密顿系统的周期轮x˙=−y, y˙= Tn + 1”(x)的多项式变形程度n,在Tn + 1 (x) = cos⁡((n + 1) arccos⁡x)是第一类切比雪夫多项式,并显示每个时期的环系统,零的超椭圆阿贝尔积分的数量不超过O (n2),这是小说。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信