Weilu Shen*, Anqi Chen, Gurminder K. Paink, Nicole Black, David A. Weitz and Eric Mazur,
{"title":"Cargo Delivery to Cells Using Laser-Irradiated Carbon-Black-Loaded Polydimethylsiloxane","authors":"Weilu Shen*, Anqi Chen, Gurminder K. Paink, Nicole Black, David A. Weitz and Eric Mazur, ","doi":"10.1021/acsmaterialslett.4c0245710.1021/acsmaterialslett.4c02457","DOIUrl":null,"url":null,"abstract":"<p >Effective intracellular delivery is essential for successful gene editing of cells. Spatially selective delivery to cells that is simultaneously precise, consistent, and nondestructive remains challenging using conventional state-of-the-art techniques. Here, we introduce a carrier-free method for spatiotemporal delivery of fluorescently labeled cargo into both adherent and suspension cells using carbon-black-embedded polydimethylsiloxane (PDMS) substrates irradiated by nanosecond laser pulses. This low-cost, biocompatible material, coupled with an optical approach, enables scalable, spatially selective, and sequential delivery of multiple cargo molecules, including FITC-Dextran and siRNA, to a broad range of cells. Notably, we achieved siRNA delivery into the cytoplasm of hard-to-transfect K562 cells with 45% efficiency, while maintaining nearly 100% cell viability.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 5","pages":"1754–1759 1754–1759"},"PeriodicalIF":9.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02457","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Effective intracellular delivery is essential for successful gene editing of cells. Spatially selective delivery to cells that is simultaneously precise, consistent, and nondestructive remains challenging using conventional state-of-the-art techniques. Here, we introduce a carrier-free method for spatiotemporal delivery of fluorescently labeled cargo into both adherent and suspension cells using carbon-black-embedded polydimethylsiloxane (PDMS) substrates irradiated by nanosecond laser pulses. This low-cost, biocompatible material, coupled with an optical approach, enables scalable, spatially selective, and sequential delivery of multiple cargo molecules, including FITC-Dextran and siRNA, to a broad range of cells. Notably, we achieved siRNA delivery into the cytoplasm of hard-to-transfect K562 cells with 45% efficiency, while maintaining nearly 100% cell viability.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.