Kawkab Ahasan, Han Hu, Pranav Shrotriya, Todd A. Kingston
{"title":"Heterogeneous Condensation on Simplified Viral Envelope Protein Structures","authors":"Kawkab Ahasan, Han Hu, Pranav Shrotriya, Todd A. Kingston","doi":"10.1021/acsami.5c01789","DOIUrl":null,"url":null,"abstract":"Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. The results indicate that initial condensation rates on surfaces with intermediate <i>p/d</i> ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. The increased peak condensation rates are not observed as <i>p/d</i> increased to and above 1.7, as the exhibited behavior is like condensation on the unstructured surface. An increase in surface hydrophilicity (θ = 15°, <i>f</i> = 3.0) leads to faster nucleation and higher peak condensation rates compared to hydrophobic surfaces (θ = 105°, <i>f</i> = 1.5). The influence of viral envelope geometries and surface wettability on the heterogeneous condensation mechanisms offers foundational insights required to understand airborne biothreat transmission, which is particularly important in the atmosphere and respiratory tract, and improve biothreat detection methods utilizing condensation-based capture devices.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"58 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c01789","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (p/d)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (f)] on heterogeneous condensation using molecular dynamics simulations. Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of p/d ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to f = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. The results indicate that initial condensation rates on surfaces with intermediate p/d ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. The increased peak condensation rates are not observed as p/d increased to and above 1.7, as the exhibited behavior is like condensation on the unstructured surface. An increase in surface hydrophilicity (θ = 15°, f = 3.0) leads to faster nucleation and higher peak condensation rates compared to hydrophobic surfaces (θ = 105°, f = 1.5). The influence of viral envelope geometries and surface wettability on the heterogeneous condensation mechanisms offers foundational insights required to understand airborne biothreat transmission, which is particularly important in the atmosphere and respiratory tract, and improve biothreat detection methods utilizing condensation-based capture devices.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.