Electron Acceleration and Zebra Stripe Formation in Saturn's Radiation Belts

IF 2.9 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
A. Y. Drozdov, P. Kollmann, Y. Hao, D. Wang, E. E. Woodfield
{"title":"Electron Acceleration and Zebra Stripe Formation in Saturn's Radiation Belts","authors":"A. Y. Drozdov,&nbsp;P. Kollmann,&nbsp;Y. Hao,&nbsp;D. Wang,&nbsp;E. E. Woodfield","doi":"10.1029/2025JA033898","DOIUrl":null,"url":null,"abstract":"<p>This study uses the Versatile Electron Radiation Belt code to model Saturn's radiation belt environment, investigating electron acceleration, loss, and transport mechanisms. The simulations consider various physical processes, including convection particularly driven by a Volland-Stern (VS) electric field, radial diffusion, collisional energy loss, and local wave-particle diffusion driven by chorus and hiss waves. Starting from initial conditions derived from Cassini observations, our simulations successfully reproduce the characteristic “zebra stripes” pattern in spectrograms of Saturn's radiation belts. Our results suggest that radial diffusion and neutral-particle interactions have negligible effects on zebra stripe formation. However, the presence of a persistent VS electric field results in significant electron acceleration above the Corotation Drift Resonance energies in the MeV energy range, producing flux levels exceeding typical observations. Additional local wave-particle diffusion further enhances electron acceleration in this energy range. When the VS electric field pulse is treated as transient instead of constant to imitate dynamic conditions, the overestimation of MeV electron flux is reduced near <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>∼</mo>\n <mn>5</mn>\n </mrow>\n <annotation> $L\\sim 5$</annotation>\n </semantics></math> but remains elevated and further enhanced near <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>∼</mo>\n <mn>8</mn>\n </mrow>\n <annotation> $L\\sim 8$</annotation>\n </semantics></math>. Despite these differences, the simulations underscore the critical role of the VS electric field and local diffusion in controlling electron acceleration and transport. Our results highlight the necessity of understanding the interplay between global electric fields and localized diffusion processes in shaping electron dynamics within Saturn's radiation belts.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025JA033898","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JA033898","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study uses the Versatile Electron Radiation Belt code to model Saturn's radiation belt environment, investigating electron acceleration, loss, and transport mechanisms. The simulations consider various physical processes, including convection particularly driven by a Volland-Stern (VS) electric field, radial diffusion, collisional energy loss, and local wave-particle diffusion driven by chorus and hiss waves. Starting from initial conditions derived from Cassini observations, our simulations successfully reproduce the characteristic “zebra stripes” pattern in spectrograms of Saturn's radiation belts. Our results suggest that radial diffusion and neutral-particle interactions have negligible effects on zebra stripe formation. However, the presence of a persistent VS electric field results in significant electron acceleration above the Corotation Drift Resonance energies in the MeV energy range, producing flux levels exceeding typical observations. Additional local wave-particle diffusion further enhances electron acceleration in this energy range. When the VS electric field pulse is treated as transient instead of constant to imitate dynamic conditions, the overestimation of MeV electron flux is reduced near L 5 $L\sim 5$ but remains elevated and further enhanced near L 8 $L\sim 8$ . Despite these differences, the simulations underscore the critical role of the VS electric field and local diffusion in controlling electron acceleration and transport. Our results highlight the necessity of understanding the interplay between global electric fields and localized diffusion processes in shaping electron dynamics within Saturn's radiation belts.

Abstract Image

土星辐射带中的电子加速和斑马条纹形成
这项研究使用通用电子辐射带代码来模拟土星辐射带环境,研究电子加速、损失和传输机制。模拟考虑了各种物理过程,包括由Volland-Stern (VS)电场驱动的对流、径向扩散、碰撞能量损失以及由合唱波和嘶嘶波驱动的局部波粒扩散。从卡西尼号观测得到的初始条件出发,我们的模拟成功地再现了土星辐射带光谱图中典型的“斑马条纹”模式。我们的研究结果表明,径向扩散和中性粒子相互作用对斑马条纹形成的影响可以忽略不计。然而,持续的VS电场的存在导致电子在MeV能量范围内的共振漂移能量以上显著加速,产生超出典型观测值的通量水平。额外的局域波粒扩散进一步增强了该能量范围内的电子加速度。将VS电场脉冲作为暂态而非常数来模拟动态条件时,MeV电子通量的高估在L ~ 5$ L\sim 5$附近有所降低,但在L ~ 8$ L\sim 8$附近仍然升高并进一步增强。尽管存在这些差异,但模拟强调了VS电场和局部扩散在控制电子加速和输运中的关键作用。我们的结果强调了理解全球电场和局部扩散过程之间相互作用的必要性,以形成土星辐射带内的电子动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信