Large and multistate magnetoresistance in 2D van der Waals multiferroic tunnel junctions

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wei Yang  (, ), Yibo Xu  (, ), Shen Li  (, ), Jiangchao Han  (, ), Xiaoyang Lin  (, ), Weisheng Zhao  (, )
{"title":"Large and multistate magnetoresistance in 2D van der Waals multiferroic tunnel junctions","authors":"Wei Yang \n (,&nbsp;),&nbsp;Yibo Xu \n (,&nbsp;),&nbsp;Shen Li \n (,&nbsp;),&nbsp;Jiangchao Han \n (,&nbsp;),&nbsp;Xiaoyang Lin \n (,&nbsp;),&nbsp;Weisheng Zhao \n (,&nbsp;)","doi":"10.1007/s40843-024-3291-3","DOIUrl":null,"url":null,"abstract":"<div><p>Multiferroic van der Waals (vdW) heterostructures hold great potential for next-generation spin-based memory and logic devices, offering versatile control over electron spins and electric polarization in atomically thin platforms. However, achieving exceptionally large tunnel magnetoresistance (TMR), stable multi-resistance states, and low resistance-area (RA) products remains a challenge. Here, using first-principles calculations, we address these issues by designing a Fe<sub>3</sub>GaTe<sub>2</sub>/α-In<sub>2</sub>Se<sub>3</sub>/Fe<sub>3</sub>GaTe<sub>2</sub> multiferroic tunnel junction (MFTJ). We demonstrate large TMR values exceeding 10<sup>5</sup>%, nonvolatile multistate and RA product below 1 Ω µm<sup>2</sup>, which matched the requirements for high-density memory cells. The remarkably low RA products from the ultrathin ferroelectric barrier’s narrow bandgap, while the exceptionally high TMR and nearly perfect spin polarization originate from enhanced momentum-selective tunneling at the Fe<sub>3</sub>GaTe<sub>2</sub>/α-In<sub>2</sub>Se<sub>3</sub> interface. Moreover, the low energy barrier for ferroelectric switching enables efficient voltage-driven polarization control. These findings establish a clear pathway for integrating low-RA, high-TMR, and multistate MFTJs into spintronic architectures, accelerating the development of high-density, energy-efficient data storage and processing technologies.</p></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 and Applications","pages":"1622 - 1629"},"PeriodicalIF":6.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3291-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multiferroic van der Waals (vdW) heterostructures hold great potential for next-generation spin-based memory and logic devices, offering versatile control over electron spins and electric polarization in atomically thin platforms. However, achieving exceptionally large tunnel magnetoresistance (TMR), stable multi-resistance states, and low resistance-area (RA) products remains a challenge. Here, using first-principles calculations, we address these issues by designing a Fe3GaTe2/α-In2Se3/Fe3GaTe2 multiferroic tunnel junction (MFTJ). We demonstrate large TMR values exceeding 105%, nonvolatile multistate and RA product below 1 Ω µm2, which matched the requirements for high-density memory cells. The remarkably low RA products from the ultrathin ferroelectric barrier’s narrow bandgap, while the exceptionally high TMR and nearly perfect spin polarization originate from enhanced momentum-selective tunneling at the Fe3GaTe2/α-In2Se3 interface. Moreover, the low energy barrier for ferroelectric switching enables efficient voltage-driven polarization control. These findings establish a clear pathway for integrating low-RA, high-TMR, and multistate MFTJs into spintronic architectures, accelerating the development of high-density, energy-efficient data storage and processing technologies.

二维范德华多铁隧道结的大磁阻和多态磁阻
多铁范德华(vdW)异质结构在下一代基于自旋的存储器和逻辑器件中具有巨大的潜力,在原子薄平台中提供对电子自旋和电极化的通用控制。然而,实现特别大的隧道磁阻(TMR)、稳定的多电阻状态和低电阻面积(RA)产品仍然是一个挑战。在这里,我们使用第一性原理计算,通过设计Fe3GaTe2/α-In2Se3/Fe3GaTe2多铁隧道结(MFTJ)来解决这些问题。我们展示了超过105%的大TMR值,非易失性多态和RA产品低于1 Ωµm2,符合高密度存储电池的要求。超薄铁电势垒的窄带隙产生了极低的RA,而异常高的TMR和近乎完美的自旋极化源于Fe3GaTe2/α-In2Se3界面上增强的动量选择隧穿。此外,铁电开关的低能量势垒使电压驱动的极化控制成为可能。这些发现为将低ra、高tmr和多态mftj集成到自旋电子架构中,加速高密度、节能数据存储和处理技术的发展开辟了一条清晰的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信