Holli-Joi Martin , Mohammad Anwar Hossain , James Wellnitz , Enes Kelestemur , Joshua E. Hochuli , Sumera Perveen , Cheryl Arrowsmith , Timothy M. Willson , Eugene N. Muratov , Alexander Tropsha
{"title":"Chemical arsenal for helicase Hunters: Striking the toughest targets in antiviral research","authors":"Holli-Joi Martin , Mohammad Anwar Hossain , James Wellnitz , Enes Kelestemur , Joshua E. Hochuli , Sumera Perveen , Cheryl Arrowsmith , Timothy M. Willson , Eugene N. Muratov , Alexander Tropsha","doi":"10.1016/j.antiviral.2025.106184","DOIUrl":null,"url":null,"abstract":"<div><div>Helicases have emerged as promising targets in antiviral drug development but remain largely undrugged. To support the focused development of viral helicase inhibitors we identified, collected, and integrated all chemogenomics data for all helicases annotated in the ChEMBL database. After thoroughly curating and enriching the data with accurate annotations we have created a derivative database of helicase inhibitors which we dubbed Heli-SMACC (Helicase-targeting SMAll Molecule Compound Collection). Heli-SMACC contains 13,597 molecules, 29 proteins, and 20,431 bioactivity entries for viral, human, and bacterial helicases. We selected 30 compounds with promising viral helicase activity and tested them in a SARS-CoV-2 NSP13 ATPase assay. Twelve compounds demonstrated ATPase inhibition and a consistent dose-response curve. While Heli-SMACC provides a rich resource for identifying candidate inhibitors, cross-species compound transferability remains a significant challenge. In particular, inhibitory activity observed against viral helicases often does not translate well to human or bacterial homologs and vice versa due to differences in binding site composition, helicase structure, and cofactor dependencies. Despite these limitations, Heli-SMACC offers a valuable starting point for structure-based optimization and target-specific inhibitor design. The Heli-SMACC database may serve as a reference for virologists and medicinal chemists working on the development of novel helicase inhibitors. Heli-SMACC is publicly available at <span><span>https://smacc.mml.unc.edu</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"239 ","pages":"Article 106184"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016635422500110X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Helicases have emerged as promising targets in antiviral drug development but remain largely undrugged. To support the focused development of viral helicase inhibitors we identified, collected, and integrated all chemogenomics data for all helicases annotated in the ChEMBL database. After thoroughly curating and enriching the data with accurate annotations we have created a derivative database of helicase inhibitors which we dubbed Heli-SMACC (Helicase-targeting SMAll Molecule Compound Collection). Heli-SMACC contains 13,597 molecules, 29 proteins, and 20,431 bioactivity entries for viral, human, and bacterial helicases. We selected 30 compounds with promising viral helicase activity and tested them in a SARS-CoV-2 NSP13 ATPase assay. Twelve compounds demonstrated ATPase inhibition and a consistent dose-response curve. While Heli-SMACC provides a rich resource for identifying candidate inhibitors, cross-species compound transferability remains a significant challenge. In particular, inhibitory activity observed against viral helicases often does not translate well to human or bacterial homologs and vice versa due to differences in binding site composition, helicase structure, and cofactor dependencies. Despite these limitations, Heli-SMACC offers a valuable starting point for structure-based optimization and target-specific inhibitor design. The Heli-SMACC database may serve as a reference for virologists and medicinal chemists working on the development of novel helicase inhibitors. Heli-SMACC is publicly available at https://smacc.mml.unc.edu.
期刊介绍:
Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.