On the convection boundedness of numerical schemes across discontinuities

IF 3 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xi Deng , Zhen-hua Jiang , Omar K. Matar , Chao Yan
{"title":"On the convection boundedness of numerical schemes across discontinuities","authors":"Xi Deng ,&nbsp;Zhen-hua Jiang ,&nbsp;Omar K. Matar ,&nbsp;Chao Yan","doi":"10.1016/j.compfluid.2025.106645","DOIUrl":null,"url":null,"abstract":"<div><div>This short note introduces a novel diagnostic tool for evaluating the convection boundedness properties of numerical schemes across discontinuities. The proposed method is based on the convection boundedness criterion and the normalised variable diagram. By utilising this tool, we can determine the CFL conditions for numerical schemes to satisfy the convection boundedness criterion, identify the locations of over- and under-shoots, optimise the free parameters in the schemes, and develop strategies to prevent numerical oscillations across the discontinuity. We apply the diagnostic tool to assess representative discontinuity-capturing schemes, including THINC, fifth-order WENO, and fifth-order TENO, and validate the conclusions drawn through numerical tests. We further demonstrate the application of the proposed method by formulating a new THINC scheme with less stringent CFL conditions.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"296 ","pages":"Article 106645"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025001057","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This short note introduces a novel diagnostic tool for evaluating the convection boundedness properties of numerical schemes across discontinuities. The proposed method is based on the convection boundedness criterion and the normalised variable diagram. By utilising this tool, we can determine the CFL conditions for numerical schemes to satisfy the convection boundedness criterion, identify the locations of over- and under-shoots, optimise the free parameters in the schemes, and develop strategies to prevent numerical oscillations across the discontinuity. We apply the diagnostic tool to assess representative discontinuity-capturing schemes, including THINC, fifth-order WENO, and fifth-order TENO, and validate the conclusions drawn through numerical tests. We further demonstrate the application of the proposed method by formulating a new THINC scheme with less stringent CFL conditions.
跨不连续面数值格式的对流有界性
这篇短文介绍了一种新的诊断工具,用于评估跨不连续面数值格式的对流有界性。该方法基于对流有界性准则和归一化变量图。利用该工具,我们可以确定满足对流有界准则的数值方案的CFL条件,确定过冲和欠冲的位置,优化方案中的自由参数,并制定策略以防止数值振荡跨越不连续。我们应用诊断工具来评估代表性的不连续捕获方案,包括THINC、五阶WENO和五阶TENO,并通过数值试验验证得出的结论。我们通过制定一个不太严格的CFL条件的新THINC方案进一步证明了所提出方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信