Effective promotion of oxygen reduction reaction by bismuth doping in PrBaCo2-xBixO5+δ cathodes for solid oxide fuel cell

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yanshen Shao , Ning Sun , Hao Sun , Ao Zhao , Fangjun Jin
{"title":"Effective promotion of oxygen reduction reaction by bismuth doping in PrBaCo2-xBixO5+δ cathodes for solid oxide fuel cell","authors":"Yanshen Shao ,&nbsp;Ning Sun ,&nbsp;Hao Sun ,&nbsp;Ao Zhao ,&nbsp;Fangjun Jin","doi":"10.1016/j.mseb.2025.118384","DOIUrl":null,"url":null,"abstract":"<div><div>The development of cathodes that exhibit both high electrochemical performance and CO<sub>2</sub> tolerance represents a critical focus in the field of solid oxide fuel cells (SOFCs). This study presents the detailed synthesis of novel PrBaCo<sub>2-</sub><em><sub>x</sub></em>Bi<em><sub>x</sub></em>O<sub>5+</sub><em><sub>δ</sub></em> materials via a sol–gel method. The cathode with <em>x</em>  = 0.05 exhibited a tetragonal perovskite structure belonging to the P4/mmm space group. A Bi<sup>3+</sup> dopant significantly improves the conductivity, electrochemical properties, and durability of PrBaCo<sub>2</sub>O<sub>5+</sub><em><sub>δ</sub></em>. The area-specific resistance of the cathode at <em>x</em>  = 0.05 was measured to be 0.082 Ω cm<sup>2</sup> at 700 °C. Furthermore, when hydrogen (H<sub>2</sub>) was utilized as the fuel and <em>x</em>  = 0.05 as a cathode, the peak power density of a single cell achieved 1340 mW cm<sup>−2</sup> at 800 °C. Single cell employing <em>x</em>  = 0.05 as a cathode material in SOFCs exhibit superior power density and long-term stability, making them a highly promising candidate for SOFC cathode applications.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"319 ","pages":"Article 118384"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725004088","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of cathodes that exhibit both high electrochemical performance and CO2 tolerance represents a critical focus in the field of solid oxide fuel cells (SOFCs). This study presents the detailed synthesis of novel PrBaCo2-xBixO5+δ materials via a sol–gel method. The cathode with x  = 0.05 exhibited a tetragonal perovskite structure belonging to the P4/mmm space group. A Bi3+ dopant significantly improves the conductivity, electrochemical properties, and durability of PrBaCo2O5+δ. The area-specific resistance of the cathode at x  = 0.05 was measured to be 0.082 Ω cm2 at 700 °C. Furthermore, when hydrogen (H2) was utilized as the fuel and x  = 0.05 as a cathode, the peak power density of a single cell achieved 1340 mW cm−2 at 800 °C. Single cell employing x  = 0.05 as a cathode material in SOFCs exhibit superior power density and long-term stability, making them a highly promising candidate for SOFC cathode applications.
铋掺杂在固体氧化物燃料电池PrBaCo2-xBixO5+δ阴极中有效促进氧还原反应
在固体氧化物燃料电池(sofc)领域,开发既具有高电化学性能又具有二氧化碳耐受性的阴极是一个关键的焦点。本文采用溶胶-凝胶法制备了新型PrBaCo2-xBixO5+δ材料。x = 0.05时,阴极呈P4/mmm空间群的四边形钙钛矿结构。Bi3+的掺入显著提高了PrBaCo2O5+δ的电导率、电化学性能和耐久性。在700°C时测得阴极在x = 0.05时的面积比电阻为0.082 Ω cm2。此外,当以氢(H2)为燃料,x = 0.05为阴极时,在800°C下,单个电池的峰值功率密度达到1340 mW cm - 2。采用x = 0.05作为SOFC阴极材料的单电池具有优越的功率密度和长期稳定性,使其成为SOFC阴极应用的极有前途的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信