Advances in calculation of kinetic parameters in free-radical polymerization by data-driven methods

IF 6.8 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yajuan Shi , Fangyou Yan , Jie Jin , Zheng-Hong Luo , Yin-Ning Zhou
{"title":"Advances in calculation of kinetic parameters in free-radical polymerization by data-driven methods","authors":"Yajuan Shi ,&nbsp;Fangyou Yan ,&nbsp;Jie Jin ,&nbsp;Zheng-Hong Luo ,&nbsp;Yin-Ning Zhou","doi":"10.1016/j.coche.2025.101141","DOIUrl":null,"url":null,"abstract":"<div><div>Kinetic parameters of free-radical polymerization (FRP) are crucial for determining polymerization rate and polymer molecular properties. This opinion article presents various data-driven methods for the determination of kinetic parameters with several case studies based on quantitative structure–property relationships. Such methods allow accurately predict the influence of chemical structural information on kinetic parameters, aligning well with known scientific knowledge. On the long run, with the development of machine learning algorithms, kinetic parameters can be calculated more accurately and efficiently, which can not only deepen the understanding of polymerization kinetics but also help to design new reactants used in FRP.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101141"},"PeriodicalIF":6.8000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339825000528","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Kinetic parameters of free-radical polymerization (FRP) are crucial for determining polymerization rate and polymer molecular properties. This opinion article presents various data-driven methods for the determination of kinetic parameters with several case studies based on quantitative structure–property relationships. Such methods allow accurately predict the influence of chemical structural information on kinetic parameters, aligning well with known scientific knowledge. On the long run, with the development of machine learning algorithms, kinetic parameters can be calculated more accurately and efficiently, which can not only deepen the understanding of polymerization kinetics but also help to design new reactants used in FRP.
数据驱动法计算自由基聚合动力学参数的研究进展
自由基聚合动力学参数是决定聚合速率和聚合物分子性能的关键。这篇观点文章提出了各种数据驱动的方法来确定动力学参数,并基于定量结构-性质关系的几个案例研究。这种方法可以准确地预测化学结构信息对动力学参数的影响,与已知的科学知识很好地一致。从长远来看,随着机器学习算法的发展,可以更准确、更高效地计算动力学参数,这不仅可以加深对聚合动力学的理解,还有助于设计用于FRP的新反应物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Chemical Engineering
Current Opinion in Chemical Engineering BIOTECHNOLOGY & APPLIED MICROBIOLOGYENGINE-ENGINEERING, CHEMICAL
CiteScore
12.80
自引率
3.00%
发文量
114
期刊介绍: Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published. The goals of each review article in Current Opinion in Chemical Engineering are: 1. To acquaint the reader/researcher with the most important recent papers in the given topic. 2. To provide the reader with the views/opinions of the expert in each topic. The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts. Themed sections: Each review will focus on particular aspects of one of the following themed sections of chemical engineering: 1. Nanotechnology 2. Energy and environmental engineering 3. Biotechnology and bioprocess engineering 4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery) 5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.) 6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials). 7. Process systems engineering 8. Reaction engineering and catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信