{"title":"Effect of magnetic ordering on the phonons of Co3Sn2S2: Temperature-dependent Raman study","authors":"Sahil Rathi , Kapil Kumar , V.P.S. Awana , Satyendra Nath Gupta","doi":"10.1016/j.physb.2025.417276","DOIUrl":null,"url":null,"abstract":"<div><div>Co<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Sn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> is a magnetic Weyl semimetal with a magnetic phase transition at <span><math><mo>≈</mo></math></span> 170 K. Here, we report the effect of this magnetic phase transition on the lattice vibration and electron–phonon coupling of Co<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Sn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> using temperature dependent Raman scattering in the temperature range from 7 K to 300 K. The intensities of E<span><math><msub><mrow></mrow><mrow><mi>g</mi></mrow></msub></math></span> and A<span><math><msub><mrow></mrow><mrow><mn>1</mn><mi>g</mi></mrow></msub></math></span> phonons decrease as temperature is increased till the magnetic transition temperature (170 K) and exhibit no temperature dependence above the transition temperature. Further, the E<span><math><msub><mrow></mrow><mrow><mi>g</mi></mrow></msub></math></span> phonon exhibit much stronger temperature dependence than A<span><math><msub><mrow></mrow><mrow><mn>1</mn><mi>g</mi></mrow></msub></math></span> phonon in the magnetic phase. The frequencies and line widths of E<span><math><msub><mrow></mrow><mrow><mi>g</mi></mrow></msub></math></span> and A<span><math><msub><mrow></mrow><mrow><mn>1</mn><mi>g</mi></mrow></msub></math></span> modes also exhibit anomalous behavior above the magnetic transition temperature. We have used spin dependent phonon scattering model to understand these anomalies in phonon frequencies, line widths and intensities.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"712 ","pages":"Article 417276"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092145262500393X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
CoSnS is a magnetic Weyl semimetal with a magnetic phase transition at 170 K. Here, we report the effect of this magnetic phase transition on the lattice vibration and electron–phonon coupling of CoSnS using temperature dependent Raman scattering in the temperature range from 7 K to 300 K. The intensities of E and A phonons decrease as temperature is increased till the magnetic transition temperature (170 K) and exhibit no temperature dependence above the transition temperature. Further, the E phonon exhibit much stronger temperature dependence than A phonon in the magnetic phase. The frequencies and line widths of E and A modes also exhibit anomalous behavior above the magnetic transition temperature. We have used spin dependent phonon scattering model to understand these anomalies in phonon frequencies, line widths and intensities.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces