Yu Su , Mengran Zhou , Wenya Li , Xiawei Yang , Qingyu Shi , Yangyu Xiong , Pengcheng Wang , Gaoqiang Chen
{"title":"Microstructural evolution and mechanical behavior of TA5 titanium alloy joint in low-temperature friction stir welding with various cooling rates","authors":"Yu Su , Mengran Zhou , Wenya Li , Xiawei Yang , Qingyu Shi , Yangyu Xiong , Pengcheng Wang , Gaoqiang Chen","doi":"10.1016/j.engfailanal.2025.109667","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effects of cooling methods and welding parameters on the microstructural evolution and mechanical properties of TA5 titanium alloy joints fabricated via low-temperature friction stir welding (FSW) with forced cooling. The proposed technique reduces heat input by applying forced cooling to the weld surface, thereby promoting high-quality joint formation under controlled thermal conditions. The results show that forced cooling minimizes grain growth and reduces joint oxidation by lowering peak welding temperatures. Specifically, the application of forced cooling, particularly liquid nitrogen cooling (LNC), enhances grain refinement within the stir zone (SZ), leading to significant improvements in tensile strength, hardness, and impact toughness. Microstructural analysis reveals that the SZ undergoes dynamic recrystallization, producing fine α-phase grains, while the heat-affected zone (HAZ) exhibits partial grain coarsening. Additionally, forced cooling mitigates the temperature gradient along the joint thickness direction, thereby reducing microstructural inhomogeneity. A comprehensive analysis of the welding parameters demonstrates that excessive heat input at high rotation speeds can cause grain coarsening, which negatively impacts the joint’s impact toughness. The optimal welding parameters (900 rpm–50 mm/min) under LNC conditions yield the best mechanical properties, with superior joint strength and toughness. These findings provide valuable insights into optimizing FSW for titanium alloys, enhancing their industrial applicability in demanding environments.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"176 ","pages":"Article 109667"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135063072500408X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effects of cooling methods and welding parameters on the microstructural evolution and mechanical properties of TA5 titanium alloy joints fabricated via low-temperature friction stir welding (FSW) with forced cooling. The proposed technique reduces heat input by applying forced cooling to the weld surface, thereby promoting high-quality joint formation under controlled thermal conditions. The results show that forced cooling minimizes grain growth and reduces joint oxidation by lowering peak welding temperatures. Specifically, the application of forced cooling, particularly liquid nitrogen cooling (LNC), enhances grain refinement within the stir zone (SZ), leading to significant improvements in tensile strength, hardness, and impact toughness. Microstructural analysis reveals that the SZ undergoes dynamic recrystallization, producing fine α-phase grains, while the heat-affected zone (HAZ) exhibits partial grain coarsening. Additionally, forced cooling mitigates the temperature gradient along the joint thickness direction, thereby reducing microstructural inhomogeneity. A comprehensive analysis of the welding parameters demonstrates that excessive heat input at high rotation speeds can cause grain coarsening, which negatively impacts the joint’s impact toughness. The optimal welding parameters (900 rpm–50 mm/min) under LNC conditions yield the best mechanical properties, with superior joint strength and toughness. These findings provide valuable insights into optimizing FSW for titanium alloys, enhancing their industrial applicability in demanding environments.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.