Jose Daniel Castro-Cisneros , Renu Malhotra , Aaron J. Rosengren
{"title":"Lunar impact ejecta flux on the Earth","authors":"Jose Daniel Castro-Cisneros , Renu Malhotra , Aaron J. Rosengren","doi":"10.1016/j.icarus.2025.116606","DOIUrl":null,"url":null,"abstract":"<div><div>The transfer of material between planetary bodies due to impact events is important for understanding planetary evolution, meteoroid impact fluxes, the formation of near-Earth objects (NEOs), and even the provenance of volatile and organic materials at Earth. This study investigates the dynamics and fate of lunar ejecta reaching Earth. We employ the high-accuracy IAS15 integrator within the REBOUND package to track for 100,000 years the trajectories of 6,000 test particles launched from various lunar latitudes and longitudes. Our model incorporates a realistic velocity distribution for ejecta fragments (tens of meters in size), derived from large lunar cratering events. Our results show that 22.6% of lunar ejecta collide with Earth, following a power-law <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>∝</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>315</mn></mrow></msup></mrow></math></span>, with half of the impacts occurring within <span><math><mo>∼</mo></math></span>10,000 years. We also confirm that impact events on the Moon’s trailing hemisphere serve as a dominant source of Earth-bound ejecta, consistent with previous studies. Additionally, a small fraction of ejecta remains transiently in near-Earth space, providing evidence that lunar ejecta may contribute to the NEO population. This aligns with recent discoveries of Earth co-orbitals such as Kamoóalewa (469219, 2016 HO3) and 2024 PT5, both exhibiting spectral properties consistent with lunar material. These findings enhance our understanding of the lunar ejecta flux to Earth, providing insights into the spatial and temporal patterns of this flux and its broader influence on the near-Earth environment.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"438 ","pages":"Article 116606"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103525001538","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The transfer of material between planetary bodies due to impact events is important for understanding planetary evolution, meteoroid impact fluxes, the formation of near-Earth objects (NEOs), and even the provenance of volatile and organic materials at Earth. This study investigates the dynamics and fate of lunar ejecta reaching Earth. We employ the high-accuracy IAS15 integrator within the REBOUND package to track for 100,000 years the trajectories of 6,000 test particles launched from various lunar latitudes and longitudes. Our model incorporates a realistic velocity distribution for ejecta fragments (tens of meters in size), derived from large lunar cratering events. Our results show that 22.6% of lunar ejecta collide with Earth, following a power-law , with half of the impacts occurring within 10,000 years. We also confirm that impact events on the Moon’s trailing hemisphere serve as a dominant source of Earth-bound ejecta, consistent with previous studies. Additionally, a small fraction of ejecta remains transiently in near-Earth space, providing evidence that lunar ejecta may contribute to the NEO population. This aligns with recent discoveries of Earth co-orbitals such as Kamoóalewa (469219, 2016 HO3) and 2024 PT5, both exhibiting spectral properties consistent with lunar material. These findings enhance our understanding of the lunar ejecta flux to Earth, providing insights into the spatial and temporal patterns of this flux and its broader influence on the near-Earth environment.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.