{"title":"A Framework for Adaptive Load Redistribution in Human-Exoskeleton-Cobot Systems","authors":"Emir Mobedi;Gokhan Solak;Arash Ajoudani","doi":"10.1109/LRA.2025.3564206","DOIUrl":null,"url":null,"abstract":"Wearable devices like exoskeletons are designed to reduce excessive loads on specific joints of the body. Specifically, single- or two-degrees-of-freedom (DOF) upper-body industrial exoskeletons typically focus on compensating for the strain on the elbow and shoulder joints. However, during daily activities, there is no assurance that external loads are correctly aligned with the supported joints. Optimizing work processes to ensure that external loads are primarily (to the extent that they can be compensated by the exoskeleton) directed onto the supported joints can significantly enhance the overall usability of these devices and the ergonomics of their users. Collaborative robots (cobots) can play a role in this optimization, complementing the collaborative aspects of human work. In this study, we propose an adaptive and coordinated control system for the human-cobot-exoskeleton interaction. This system adjusts the task coordinates to maximize the utilization of the supported joints. When the torque limits of the exoskeleton are exceeded, the framework continuously adapts the task frame, redistributing excessive loads to non-supported body joints to prevent overloading the supported ones. We validated our approach in an equivalent industrial painting task involving a single-DOF elbow exoskeleton, a cobot, and four subjects, each tested in four different initial arm configurations with five distinct optimisation weight matrices and two different payloads.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"5927-5934"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10976329/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Wearable devices like exoskeletons are designed to reduce excessive loads on specific joints of the body. Specifically, single- or two-degrees-of-freedom (DOF) upper-body industrial exoskeletons typically focus on compensating for the strain on the elbow and shoulder joints. However, during daily activities, there is no assurance that external loads are correctly aligned with the supported joints. Optimizing work processes to ensure that external loads are primarily (to the extent that they can be compensated by the exoskeleton) directed onto the supported joints can significantly enhance the overall usability of these devices and the ergonomics of their users. Collaborative robots (cobots) can play a role in this optimization, complementing the collaborative aspects of human work. In this study, we propose an adaptive and coordinated control system for the human-cobot-exoskeleton interaction. This system adjusts the task coordinates to maximize the utilization of the supported joints. When the torque limits of the exoskeleton are exceeded, the framework continuously adapts the task frame, redistributing excessive loads to non-supported body joints to prevent overloading the supported ones. We validated our approach in an equivalent industrial painting task involving a single-DOF elbow exoskeleton, a cobot, and four subjects, each tested in four different initial arm configurations with five distinct optimisation weight matrices and two different payloads.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.