{"title":"Multicomponent Metallacages via the Integrative Self-Assembly of Pt(II) Nodes with Multiple Pyridyl and Carboxylate Ligands","authors":"Yali Hou, Zeyuan Zhang, Mingming Zhang","doi":"10.1021/acs.accounts.5c00085","DOIUrl":null,"url":null,"abstract":"In recent years, multicomponent self-assembly has emerged as a pivotal strategy in supramolecular chemistry, enabling the construction of artificial systems with enhanced functionalities that surpass those of individual molecular components. These assemblies have garnered significant interest due to their potential applications in molecular recognition, catalysis, and biomedical engineering. However, achieving precise control over the assembly process remains a significant challenge, as increased structural complexity often results in thermodynamic mixtures, limiting their practical applications. In this context, metal-coordination-driven multicomponent self-assembly has emerged as a promising strategy, as the moderate strength and good directionality of metal–ligand bonds ensure the formation of discrete supramolecular architectures with well-defined structures and geometries. Notably, the integration of pyridyl and carboxylate donors with <i>cis</i>-Pt(II) nodes offers an effective approach for constructing multicomponent metallacages. This method is particularly attractive due to its ability to enable precise heteroleptic assembly, along with the accessibility and tunability of the ligands, which impart desirable photophysical properties and potential anticancer activities.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"14 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.5c00085","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, multicomponent self-assembly has emerged as a pivotal strategy in supramolecular chemistry, enabling the construction of artificial systems with enhanced functionalities that surpass those of individual molecular components. These assemblies have garnered significant interest due to their potential applications in molecular recognition, catalysis, and biomedical engineering. However, achieving precise control over the assembly process remains a significant challenge, as increased structural complexity often results in thermodynamic mixtures, limiting their practical applications. In this context, metal-coordination-driven multicomponent self-assembly has emerged as a promising strategy, as the moderate strength and good directionality of metal–ligand bonds ensure the formation of discrete supramolecular architectures with well-defined structures and geometries. Notably, the integration of pyridyl and carboxylate donors with cis-Pt(II) nodes offers an effective approach for constructing multicomponent metallacages. This method is particularly attractive due to its ability to enable precise heteroleptic assembly, along with the accessibility and tunability of the ligands, which impart desirable photophysical properties and potential anticancer activities.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.