Julian Heuberger, Lichao Liu, Hilmar Berger, Joop van den Heuvel, Manqiang Lin, Stefanie Müllerke, Safak Bayram, Giulia Beccaceci, Hugo de Jonge, Ermanno Gherardi, Michael Sigal
{"title":"Extrusion of BMP2+ surface colonocytes promotes stromal remodeling and tissue regeneration","authors":"Julian Heuberger, Lichao Liu, Hilmar Berger, Joop van den Heuvel, Manqiang Lin, Stefanie Müllerke, Safak Bayram, Giulia Beccaceci, Hugo de Jonge, Ermanno Gherardi, Michael Sigal","doi":"10.1038/s41467-025-59474-y","DOIUrl":null,"url":null,"abstract":"<p>The colon epithelium frequently incurs damage through toxic influences. Repair is rapid, mediated by cellular plasticity and acquisition of the highly proliferative regenerative state. However, the mechanisms that promote the regenerative state are not well understood. Here, we reveal that upon injury and subsequent inflammatory response, IFN-γ drives widespread epithelial remodeling. IFN-γ promotes rapid apoptotic extrusion of fully differentiated surface colonocytes, while simultaneously causing differentiation of crypt-base stem and progenitor cells towards a colonocyte-like lineage. However, unlike homeostatic colonocytes, these IFN-γ-induced colonocytes neither respond to nor produce BMP-2 but retain regenerative capacity. The reduction of BMP-2-producing epithelial surface cells causes a remodeling of the surrounding mesenchymal niche, inducing high expression of HGF, which promotes proliferation of the IFN-γ-induced colonocytes. This mechanism of lineage replacement and subsequent remodeling of the mesenchymal niche enables tissue-wide adaptation to injury and efficient repair.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"8 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59474-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The colon epithelium frequently incurs damage through toxic influences. Repair is rapid, mediated by cellular plasticity and acquisition of the highly proliferative regenerative state. However, the mechanisms that promote the regenerative state are not well understood. Here, we reveal that upon injury and subsequent inflammatory response, IFN-γ drives widespread epithelial remodeling. IFN-γ promotes rapid apoptotic extrusion of fully differentiated surface colonocytes, while simultaneously causing differentiation of crypt-base stem and progenitor cells towards a colonocyte-like lineage. However, unlike homeostatic colonocytes, these IFN-γ-induced colonocytes neither respond to nor produce BMP-2 but retain regenerative capacity. The reduction of BMP-2-producing epithelial surface cells causes a remodeling of the surrounding mesenchymal niche, inducing high expression of HGF, which promotes proliferation of the IFN-γ-induced colonocytes. This mechanism of lineage replacement and subsequent remodeling of the mesenchymal niche enables tissue-wide adaptation to injury and efficient repair.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.